52 research outputs found

    Subsonic flutter analysis addition to NASTRAN

    Get PDF
    A subsonic flutter analysis capability has been developed for NASTRAN, and a developmental version of the program has been installed on the CDC 6000 series digital computers at the Langley Research Center. The flutter analysis is of the modal type, uses doublet lattice unsteady aerodynamic forces, and solves the flutter equations by using the k-method. Surface and one-dimensional spline functions are used to transform from the aerodynamic degrees of freedom to the structural degrees of freedom. Some preliminary applications of the method to a beamlike wing, a platelike wing, and a platelike wing with a folded tip are compared with existing experimental and analytical results

    Aeroelastic instability stoppers for wind tunnel models

    Get PDF
    A mechanism for diverting the flow in a wind tunnel from the wing of a tested model is described. The wing is mounted on the wall of a tunnel. A diverter plate is pivotally mounted on the tunnel wall ahead of the model. An actuator fixed to the tunnel is pivotably connected to the diverter plate, by plunger. When the model is about to become unstable during the test the actuator moves the diverter plate from the tunnel wall to divert maintaining stable model conditions. The diverter plate is then retracted to enable normal flow

    Some effects of tip fins on wing flutter characteristics

    Get PDF
    A wind tunnel investigation has been conducted over the Mach number range from about 0.6 to 1.2 to determine the effects of large tip fins on the flutter characteristics of a swept wing. The basic wing configuration had an aspect ratio of 0.95, leading-edge sweep of 40 deg 0, and trailing-edge sweep of 21 deg. Two of these configurations were modified with tip fins of 60 deg dihedral and had effective aspect ratios of 1.5 and 2.2. In general, the results indicate that the addition of tip fins reduces the flutter speed, with the larger fin having the greater effect. Comparison of the experimental flutter speeds at Mach numbers between 0.60 and 0.90 with calculated values obtained by using doublet-lattice unsteady aerodynamic theory was good. Analytical results where structural and aerodynamic effects of the tip fins were isolated indicated that the reduction in flutter speed produced by the addition of the fins was caused by both effects, with the structural effect being the more pronounced

    Dynamic response of a forward-swept-wing model at angles of attack up to 15 deg at a Mach number of 0.8

    Get PDF
    Root mean square (rms) bending moments for a dynamically scaled, aeroelastic wing of a proposed forward swept wing, flight demonstrator airplane are presented for angles of attack up to 15 deg at a Mach number of 0.8 The 0.6 size semispan model had a leading edge forward sweep of 44 deg and was constructed of composite material. In addition to broad band responses, individual rms responses and total damping ratios are presented for the first two natural modes. The results show that the rms response increases with angle of attack and has a peak value at an angle of attack near 13 deg. In general, the response was characteristic of buffeting and similar to results often observed for aft swept wings. At an angle of attack near 13 deg, however, the response had characteristics associated with approaching a dynamic instability, although no instability was observed over the range of parameters investigated

    Effects of angle of attack and vertical fin on transonic flutter characteristics of an arrow-wing configuration

    Get PDF
    Experimental transonic flutter results are presented for a simplified 1/50 size, aspect ratio 1.77, wind tunnel model of an arrow wing design. Flutter results are presented for two configurations; namely, one with and one without a ventral fin mounted at the 0.694 semispan station. Results are presented for both configurations trimmed to zero lift and in a lifting condition at angles of attack up to 4 deg. The results show that the flutter characteristics of both configurations are similar to those usually observed. Increasing angle of attack reduces the flutter dynamic pressure by a small amount (about 13 percent maximum) for both configurations. The addition of the fin to the basic wing increases the flutter dynamic pressure. Calculated results for both configurations in the nonlifting condition obtained by using subsonic doublet lattice unsteady aerodynamic theory correlate reasonably well with the experimental results. Calculated results for the basic wing obtained by using subsonic kernal function unsteady aerodynamic theory did not agree as well with the experimental data

    Wind-tunnel experiments on divergence of forward-swept wings

    Get PDF
    An experimental study to investigate the aeroelastic behavior of forward-swept wings was conducted in the Langley Transonic Dynamics Tunnel. Seven flat-plate models with varying aspect ratios and wing sweep angles were tested at low speeds in air. Three models having the same planform but different airfoil sections (i.e., flat-plate, conventional, and supercritical) were tested at transonic speeds in Freon 12. Linear analyses were performed to provide predictions to compare with the measured aeroelastic instabilities which include both static divergence and flutter. Six subcritical response testing techniques were formulated and evaluated at transonic speeds for accuracy in predicting static divergence. Two "divergence stoppers" were developed and evaluated for use in protecting the model from structural damage during tests

    Application of interactive computer graphics in wind-tunnel dynamic model testing

    Get PDF
    The computer-controlled data-acquisition system recently installed for use with a transonic dynamics tunnel was described. This includes a discussion of the hardware/software features of the system. A subcritical response damping technique, called the combined randomdec/moving-block method, for use in windtunnel-model flutter testing, that has been implemented on the data-acquisition system, is described in some detail. Some results using the method are presented and the importance of using interactive graphics in applying the technique in near real time during wind-tunnel test operations is discussed

    Preliminary study of effects of winglets on wing flutter

    Get PDF
    Some experimental flutter results are presented over a Mach number range from about 0.70 to 0.95 for a simple, swept, tapered, flat-plate wing model having a planform representative of subsonic transport airplanes and for the same wing model equipped with two different upper surface winglets. Both winglets had the same planform and area (about 2 percent of the basic-wing area); however, one weighed about 0.3 percent of the basic-wing weight, and the other weighed about 1.8 percent of the wing weight. The addition of the lighter winglet reduced the wing-flutter dynamic pressure by about 3 percent; the heavier winglet reduced the wing-flutter dynamic pressure by about 12 percent. The experimental flutter results are compared at a Mach number of 0.80 with analytical flutter results obtained by using doublet-lattice and lifting-surface (kernel-function) unsteady aerodynamic theories

    A preliminary study of the effects of vortex diffusers (winglets) on wing flutter

    Get PDF
    Some experimental flutter results are presented for a simple, flat-plate wing model and for the same wing model equipped with two different upper surface vortex diffusers over the Mach number range from about 0.70 to 0.95. Both vortex diffusers had the same planform, but one weighed about 0.3 percent of the basic wing weight, whereas the other weighed about 1.8 percent of the wing weight. The addition of the lighter vortex diffuser reduced the flutter dynamic pressure by about 3 percent; the heavier vortex diffuser reduced the flutter dynamic pressure by about 12 percent. The experimental flutter results are compared at a Mach number of 0.80 with analytical flutter results obtained by using doublet lattice and lifting surface (Kernel function) unsteady aerodynamic theories
    corecore