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AERODYNAMIC DAMPING DERIVATIVES OF A LAUNCHVEHICLE

VIBRATING IN FREE-FREE BENDING MODES AT MACH NUMBERS

FROM 0.70 TO 2.87 AND COMPARISONS WITH THEORY

By Perry W. Hanson and Robert V. Doggett, Jr.

SUMMARY

The aerodynamic damping of a flexibly mounted aeroelastic model

with a blunted conical nose and a cylindrical afterbody was measured at

Mach numbers from 0.70 to 1.20 at several levels of dynamic pressure

and two weight conditions and at Mach numbers from 1.76 to 2.87 at one

weight condition. The first two free-free flexible modes of vibration

were investigated. Also investigated at Mach numbers from 0.9 to 1.2

was the aerodynamic damping in the first free-free modes of a model

which had a "hammerhead" nose (the base diameter of the blunted cone

was greater than the diameter of the _fterbody which necessitated a

reflex angle downstream from the cone base).

Two basically different methods, the "electrical power-input" and

the "decaying oscillations" methods were used to determine the damping

and frequencies. The experimentally determined values are compared with

some applicable theories. The results of the investigation indicate

that the aerodynamic damping in the elastic modes of vibration was small

for all configurations tested. The maximum aerodynamic damping measured

in the first mode was on the order of 60 percent of the structural

damping. The aerodynamic damping was found to be even less for vibration

modes higher than the first. Reduced-frequency effects were found to be

negligible for the range investigated. Agreement of calculated aerody-

namic damping derivatives with the experimental results was not good.

Generally, the experimentally determined derivatives were larger than

those predicted by the various theories used. The Bond-Packard theory

appeared to give the best agreement for the first free-free vibration

mode out gave the worst agreement for the second mode. Measurements

made on the configuration that had a hammerhead nose indicated small

negative aerodynamic damping in the Mach number range from 0.95 to 1.00.

Aerodynamic stiffness effects were found to be small and within the

experimental scatter. (Wind-on frequency determination was accurate

only Go approximately i percent.)
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INTRODUCTION

The problem of the determination of oscillatory aerodynamic deriva-
tives of aircraft and/or aircraft componentshas been met to someextent
by the use of theoretical estimates and a numberof derivative measure-
ments. However, comparatively little work has been done on this problem
as related to slender bodies of revolution representative of guided
missiles and space launch vehicles, particularly in the experimental
field. Launch vehicles, especially, are structures of maximumdesign
efficiency with a minimumof weight available for supporting members.
The resulting structures are relatively flexible and could be subject to
aeroelastic instabilities particularly in the cases where lifting pay-
loads are involved. The need for suitable theoretical approaches and
experimental data on the oscillatory aerodynamic derivatives of such
slender bodies of revolution is thus becoming more urgent. The lack of
experimental data, both as an indication of the magnitudes of the deriva-
tives involved for flexible slender bodies of revolution and as a basis
for evaluating the accuracy of theoretical predictions, is therefore of
increasing concern.

It is for this reason that the present investigation was undertaken
to attempt to measureexperimentally the aerodynamic damping and stiff-
ness of an aeroelastic model having scaled physical properties approxi-
mating those of a launch vehicle. The purpose of the investigation w_s
twofold: first, to attempt to apply someknowngeneral techniques of
measurementof oscillatory aerodynamic derivatives to the rather special-
_zed problem at hand; and second, to present the results of the inves-
tigation as an indication of the relative accuracy of several theoretical
approaches that might be used.

There are, of course, manymethods that maybe employedfor the
measurementof aerodynamic derivatives in wind tunnels. Reference 1
presents a rather complete discussion of various methods that have been
used in the past and contains an extensive list of references on the
subject. For the present investigation, it was decided that, because
of the expected small values of the derivatives with the attendant dif-
ficulty of accurate measurement, two basic techniques would be used
concurrently. Onetechnique chosen was the "power-input" method where
the model is excited at resonance with an electromagnetic shaker. The
other technique chosen was the well-known "decaying oscillation" method.
In both techniques the aerodynamic stiffness is indicated by the change
in frequency between the wind-on and the wind-off conditions.

Tests were conducted in the Langley 8-foot transonic pressure tun-
nel over the Machnumberrange from 0.70 to 1.20 and in the Langley
Unitary Plan wind tunnel over the Machnumberrange from 1.76 to 2.87.
The basic model was a slender cone cylinder designed to approximate the
geometric and dynamic characteristics of a representative launch vehicle.
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Tests were also conducted on a model having natural frequencies approxi-

mately twice those of the basic scaled model and on a model where the

conical nose was replaced with a "hammerhead" type nose.

Several aerodynamic theories (refs. 2 to 7) were used to calculate

predicted aerodynamic damping coefficients. The results are compared

with the experimental results.

SYMBOLS

AC

AI

a(t),b(t)

B,C

Cc r

c_

CN,_

E1

F(t)

F

GI, G2

h o

h_

h(x),H(x)

I

distribution function of damping portion of aerodynamic loading

distribution function of inertia portion of aerodynamic loading

distribution function of stiffness portion of aerodynamic

loading

tip amplitudes

generalized damping

damping per unit length

critical value of damping

damping derivative (C_ = 2_kCA_ccr/

section steady-state normal-force slope

flexural stiffness

sinusoidal driving force

generalized aerodynamic force

functions of M_ and 0

amplitude of decaying vibration

amplitude of decaying vibration after p cycles

mode shapes based on unit tip deflection

current



K

kI, k2

L

M

m(x 

m,n

P

P

q

q!, q2

all

R

R(x)

r

t

T

V

W(x,t)

x_y

y(x, t)

xI, X2

x3

C_

generalized stiffness

spring constants

length of model

generalized mass

free- stream Mach number

mass per unit length

integers

electrical power

number of cycles between amplitudes h0 and hp

1 2
dynamic pressure, _oV

proportionality constants

generalized force associated with aerodynamic damping

electrical resistance

function defining model geometry

radius of cylindrical portion of model

time

arbitrary period of time

free-stream velocity

aerodynamic running shear load

Cartesian coordinates

deflection shapes

longitudinal locations of springs kI and k2, respectively

longitudinal location of applied sinusoidal force, F(t)

angle of attack



5(X--Xn)

7

8

0

virtual displacement

virtual work done by aerodynamic forces

Dirac function

ratio of specific heats

cone semivertex angle

test mediumdensity

mass ratio (_ = Mo_2L)

circular frequencies

Subscript s:

m

n

A

r

mth natural vibration mode, m = i, 2, 3, • •

nth natural vibration mode, n = i, 2, 3, • • •

aerodynamic

randomquantities

structural

Dots over symbols indicate derivatives with respect to time.

APPARATUSANDTESTPROCEDURE

Model and Support System

Construction.- The construction of the model and sting used in the

tests is illustrated in figures i, 2, and 3. The model was built in
three sections to make insertion of instrumentation and ballast weights

easier and to permit easier assembly on the sting. Basically, each

section consisted of a fiber-glass shell 0.03 inch thick bonded to

aluminum rings which served to stiffen the model in the hoop plane. The

rings also were used as mounts for the accelerometers, shaker moving

coils, the flex springs which supported the model on the sting, and the

lead weights which were used to lower the natural vibration frequencies

to scaled values approximating those that might be considered typical

of launch vehicles. Model dimensions are presented in figure 2.



The model was supported on the sting by the flex springs shownin
figure 3. These springs were located approximately at the first free-
free node points on the model in order to minimize their influence on
the free-free modes.

The model was excited in its natural free-free modesof vibration
by the electromagnetic shaker built into the sting. Also incorporated
in the sting was a provision for cooling the shaker by meansof circu-
lating cooling air through the sting and blowing it back on the field
coils. The sting also carried a set of pneumatic brakes which were
used to restrain the model during starting and stopping transient flow.
These features are shownin figure i(b). The basic model mounted in
the Langley Unitary Plan wind tunnel is shownin figure 4.

Model physical _roperties.- Three model configurations were tested.

Configurations i and 2 differed only in the mass_ the model geometry

being the same. Configuration 3, however_ consisted of the basic model

with a large hammerhead nose which was fitted over the basic shell in

such a manner that it touched the basic shell only at the nose and

shoulder. (See fig. 2.) The experimentally determined frequencies,

mode shapes_ and damping ratios of the three configurations are pre-

sented in table I and figure 5. Also presented in figure 5 are the

calculated mode shapes for a uniform free-free beam. As is shown by the

figure the mode shapes for the models tested in this investigation are

very similar to those of a uniform free-free beam. These mode shapes

were determined through the use of a small velocity pick-up. The mass

distributionj determined by weighing the individual components before

assembly, is shown in table II. Also shown are the total weights of the

configurations, the calculated generalized masses, the natural frequen-

cies of vibration, and the values of critical damping.

INSTRUMENTATION

The model instrumentation consisted of an accelerometer located in

the nose which was used to indicate the shaking amplitude of the model;

two skin thermocouples located approximately at one-quarter and three-

quarters of the model length_ and electrical wire resistance type strain

gages located on the flex springs. Thermocouples also were imbedded in

the moving coils and field coils of the shaker in order to provide a

means for monitoring the coil temperatures. An accelerometer on the end

of the sting provided a means of determining vertical sting motion.

A variable-frequency oscillator and power amplifier were used to

provide alternating current to the moving coils and a direct-current

variable voltage transformer supplied the direct current to the shaker

field coils. A fouling light provided a means of determining that the

moving coils were riding free of the stationary parts of the shaker.



The readout instrumentation consisted of the following:

Vacuumtube voltmeter: indicated model vibration amplitude from
accelerometer in modenose

Ammeter: indicated current applied to moving coils of shaker

Ammeter: indicated current applied to field coils of shaker (held
constant at 2.5 amps)

Low-power-factor wattmeter: indicated power drawn by moving coils

Oscilloscope: provided meansfor monitoring wave form of force
output of shaker and of model response

Electronic period counter: used to determine frequency of forced
oscillations

Potentiometer: indicated temperature of the model skin, the moving
coils, and the field coils

Electronic dampometer: measuredthe logarithmic decrement and the
decaying frequency and was used to monitor the damping in order to
determine any large changesdue to structural failure. This electronic
device is described in reference 8.

Oscillograph: recorded the signals from the accelerometer in the
model nose, the strain gages on the model supporting flex springs, and
the fouling indicator.

A block diagram of the instrumentation setup is shownin figure 6.
A variable-frequency voltage was applied to the shaker moving coils by
an oscillator and a power amplifier. A constant current of 2.5 amperes
was supplied to the shaker field coils by a d-c power supply. The cur-
rent tb_roughthe moving coils was measuredby use of a vacuum-tube
voltmeter shunted with a 1-ohmprecision resistor. The power consumed
by the shaker was measuredby use of a low-power-factor wattmeter. A
supplementary circuit was employed to determine accurately the resistance
of the moving coils which varied due to temperature changes in the coils.
Immediately after each test point, a battery-supplied voltage was applied
to the coils and the voltage and corresponding current noted from the
voltmeter and ammeter, respectively.

Wind Tunnels

The investigation was conducted in two wind tunnels. The Langley
8-foot transonic pressure tunnel was used for the Machnumberrange from
0.8 to 1.2 and the Langley Unitary Plan wind tunnel was used for the
Machnumberrange from 1.76 to 2.87. Both tunnels are of the continuous-
flow type with variable Machnumberand density control. Stagnation tem-
perature in both tunnels was held constant at approximately 125° F.
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Test Procedure

The test procedure used in both tunnels was essentially the same.

After mounting the model in the tunnel it was shaken at the resonant fre-

quency of the desired free-free mode with no air flowing at several test-

section pressures from atmospheric down to moderately low vacuums with

cooling air on and off. No change in frequency or damping was observed.

While the model was vibrating at a given amplitude, data were recorded

from all the meters necessary for application of the "power-input" method

of determining damping. The power to the shaker was then cut (and the

shaker moving coils removed from the electrical circuit) and the decaying

oscillations of the model were recorded. While the model motion was

decaying, the logarithmic decrement and decaying frequency were measured

by an electronic dampometer. This device provided a quick means of

detecting any extreme changes in damping due to structural failure, loose

screws, and so forth. After obtaining the no-wind data, the model "brake"

was actuated and the tunnel started. When the tunnel reached the desired

operating conditions 3 the model brake was released and the above procedure

repeated. The process was continued for all the modes investigated at the

various Mach numbers and at several levels of dynamic pressure at each
Mach number. The Reynolds number range for the tests was from 0.7 × 10 6

to 2 X 10 6 based on model afterbody diameter.

Reduction of Data

The method of calculating damping from freely deca$ing motions of a

structure is well known. The ratio of total damping to critical damping

for a given mode of vibration of a linear system is

CA + Cs _ i log e h0
Ccr 2_p _p

where

h0 an amplitude of vibration

hp amplitude of vibration s/'ter p cycles

p number of cycles between amplitude h0 and hp

The aerodynamic damping ratio CA is determined by measuring the struc-
Ccr

C s
tural damping ratio in still air before each test and subtracting

Ccr

it from the total damping measured during the test.



Relationships for determining the damping ratio from the elctrical
measurementsare developed in appendix A. The resulting expression is

CA + C s _ ql2H(x3) 12

Ccr 2q2Ms_ p - 12R

(see appendix A) where

H(x3) mode-shape deflection at shaker location

I current through shaker moving coils

Ms generalized mass of model

P electric power consumed by shaker moving coil circuit

ql proportionality constant relating shaker force output to the

current applied to moving coils

q2 a proportionality constant relating model tip velocity to

voltage applied to moving coils

R electrical resistance of shaker moving coil circuitry

natural vibration frequency at test condition

Since the ratio of structural damping to critical damping of the model

was found to be slightly dependent upon amplitude and temperature, it

was necessary to construct calibration curves of structural damping

ratios against model-vibration amplitude and skin temperature so that

structural damping measured before the tests could be corrected to

correspond to that associated with the vibration amplitude and skin

temperature of the model at the test point. A representative set of

these calibration curves is shown in figure 7. After adjusting the

no-wind structural damping to the value associated with the wind-on test

point_ the adjusted structural damping ratio was subtracted from the

wind-on total damping measured to get the aerodynamic damping ratio.

For convenience in presenting the data_ an averaged value of the struc-

tural damping ratio was then added back to the aerodynamic damping ratio

for each test condition to give the total damping ratio that is presented

in the results.

The ratios of aerodynamic damping to critical damping obtained in

this manner apply only to the particular mechanical systems used in these

tests. In order to make the damping measurements of more general value,

a nondimensional damping force coefficient C_ can be defined in terms
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of the usual flutter parameters_ reduced frequency and massratio_ in
such a manneras to permit estimation of aerodynamic damping of similar
configurations having somewhatdifferent structural characteristics.
As indicated in appendix B (eq. B5)

CA _ _PV r2 F L/r CN ' Rc_Rr_rX--1 H2(x) d(X)
Ccr 2MsX v 0

and C_ is defined by

CA _@Vr 2
- C_

Ccr 2Ms_

or, if this expression is rewritten in terms of conventional flutter

parameters,

where

k

V

r

P

L

M s

h

reduced frequency,
V

an effective mass ratio_
M s

_r 2 pL

flow velocity

radius of cylindrical portion of model

mass density of test medium

overall length of configuration

generalized mass of configuration in vibration mode of
interest

frequency of vibration in mode of interest

This damping-force coefficient C_ is useful in scaling model results

to equivalent full-scale conditions and is used in the presentation of the

CA
results of the investigation along with the damping ratio --.

Ccr
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RESULTSANDDISCUSSION

The values of damping observed in this investigation for the various
test conditions are shownin figures 8 to ii. Shownin figure 8(a) is
the variation of the ratio of total damping to critical damping with the
flow parameter DV (test-section air density multiplied by the free-
stream velocity) for model configuration i oscillating in the first free-
free modeat several Machnumbers. The parameter DV is used because the
theories applied have all predicted a linear variation of aerodynamic
damping with pV for a given Machnumber. (See appendix B.) The dashed
line is the averaged structural damping ratio. Shownplotted are data
obtained from the power input method (open symbols) and from freely
decaying oscillations (solid symbols). The freely decaying oscillations
data is an average of that obtained from the electronic dampometerand
from the oscillograph records. It should be mentioned that the free-decay
method could not be used transonically because of the very uneven decays
causedby the model response to the transonic flow conditions. Although
there is scatter in the data, someobservations can be made. First, note
that the aerodynamic dampingratio is small, being on the order of 60 per-
cent of the structural damping ratio at the maximum pV tested.

Also, note that for the supersonic Machnumbers investigated in the
Langley Unitary Plan wind tunnel, the ratio of aerodynamic damping to
critical damping appears to vary linearly with pV whereas in general
this is not true for the transonic Machnumbers.

In figure 8(b) the aerodynamic derivative C_ for the first free-
free vibration modeof model configuration i is plotted against Machnum-
ber for several of the higher values of DV. Data from both the power-
input and free-decay methods of measurementare included for the Mach
numberrange from 1.76 to 2.87. Within the scatter of the data (which is
greatly magnified on the basis of the parameter C_), there is apparently
little Machnumber effect. Also shownin figure 8(b) are someaero-
dynamic damping derivatives calculated (using experimentally determined
modeshapes) from piston theory, momentumtheoryj second-order shock-
expansion theory, second-order Van Dyke theory_ and a theory by Bond and
Packard. (See appendix B for an explanation of how these various theories
were applied.) The second-order shock-expansion and second-order Van Dyke
theories showthe worst agreement with experiment. The trend with Mach
number indicated by piston theory is not evident in the experimental
results. The Bond-Packard theory agrees very well with the experimental
results.

The results of dampingmeasurementsin the second free-free vibra-
tion modeof model configuration i are shownin figure 9. The variation
of total damping with the flow parameter 0V at several Machnumbers is
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shownin figure 9(a). Note that, unlike the first-mode data, the struc-
tural d_mping as determined from the power input and free-decay methods
is not the same. The reason for this wide disparity has not been
resolved and warrants further investigation. It is felt_ however, that
tuuder forced vibration conditions the model maybe responding in a mode
that degenerates into a slightly different shapewhen the model is freely
decaying. If this is the case, the change is not significant enoughto
alter the trend reflected in the aerodynamic damping shownfor the two
methods in figure 9(a). Although the structural damping differs almost
by a factor of two_ the aerodynamic dampingmeasuredby the two methods
is in fairly good agreement. In both cases, the maximumaerodynamic
damping is less than 40 percent of the corresponding structural damping.

In figure 9(b), the damping derivative C_ for the second free-free
modeis plotted against Machnumberfor several of the higher values of
0V. Experimental values determined from the two methods are shownwith
somecalculated derivatives. NoMachnumbereffect is apparent from the
power-input data although the free-decay-method data showan apparent
decrease in the damping derivative with Machnumberover the range that
the methodwas usable. The sametrend is seen to be predicted by the data
calculated by using the piston theory. The other theories are not in good
agreement with the experimental values.

The results of damping measurementson the first free-free modeof
model configuration 2 (which had a frequency about twice that of con-
fi_aration i) is shownin figure i0. The variation of total damping
ratio with the flow parameter pV is shownin figure 10(a) for several
Machnumbers. The primary observation to be madehere is that the maxi-
mumaerodynamic damping is about 60 percent of the structural damping,
which is about the sameas it was for configuration i. Also_ the values
of C_ for the two configurations are roughly the sameat comparable
Machnumbers. The results of tests on the two configurations therefore
indicate little, if any, reduced-frequency effect for the range
investigated.

In figure lO(b) the variation of the aerodynamic damping deriva-
tive C_ with Machnumber is shownfor several values of pV. NoMach
numbereffect is apparent in the experimental data. Also shownare
values of C_ obtained from quasi-steady calculations based on static
pressure-distribution measurementsmadeon a rigid model of like geometry
given in reference 9- These calculated values are seen to be low with
respect to the experimental dampingderivatives as was the case for the
purely theoretical approaches used on configuration i.

Figure ii presents the variation of total dampingwith Machnumber
for model configuration 3 vibrating in the first free-free bending mode.
The interesting point to be observed here is that the addition of the
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"hammerhead" nose to configuration i resulted in small negative aero-

dynamic damping over a portion of the Mach number range from about 0.95
to 1.00.

It might be mentioned that the scarcity of data points for this

configuration relative to the other configurations tested is due to the

fact that the model response to buffeting loads was so severe that the

springs that supported the model on the sting kept breaking before the

data could be obtained.

A few remarks on the results of the test program in general are in

order. Although an attempt was made to measure aerodynamic stiffness in

addition to aerodynamic damping in the elastic modes, no discernible

change in model frequency was apparent outside the normal scatter in the

data between the wind-off and the various tunnel wind-on conditions.

(Wind-on frequency determination was accurate only to approximately

i percent.) Likewise, attempts to measure aerodynamic damping in the

third free-free mode proved to be futile because of the apparently

extremely low values even under maximum pV conditions. Also, "hoop"

modes appearing in the third free-free bending mode made accurate

determination of the mode shape extremely difficult.

CONCLUDING REMARKS

Aerodynamic damping measurements made on a sting-mounted aero-

elastic model with a blunted conical nose and a cylindrical afterbody

over a Mach number range from 0.8 to 2.87, and on a model with a

"hammerhead" nose at Mach numbers from 0.9 to 1.2 indicate that the

aerodynamic damping in the elastic modes of vibration was small for all

configurations tested. The maximum aerodynamic damping measured was

approximately 60 percent of the structural damping. The aerodynamic

damping was found to be even less for vibration modes higher than the

first.

Reduced-frequency effects were found to be negligible for the range

investigated.

Of the various theoretical methods considered, only the Bond-

Packard theory for damping in the first elastic mode showed good agree-

ment with the experimental results. Generally, the experimentally

determined derivatives were larger than those predicted by the various

theories used.

Measurements made on the configuration that had a hammerhead nose

indicated small negative aerodynamic damping in the Mach number range

from 0.95 to !.0.
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Aerodynamic stiffness effects were found to be small and fell within

the experimental scatter since wind-on frequency determination was accu-

rate only to approximately i percent.

Langley Research Center,
National Aeronautics and Space Administration,

Langley Station, Hampton, Va., June 7, 1962.
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APPENDIXA

DEVELOPMENTOFDATA-REDUCTIONRELATIONS

FORFORCEDOSCILLATIONDAMPINGMEASUREMENTTECHNIQUE

The purpose of this appendix is to present in somedetail the rela-
tionships necessary to the data reduction for the forced-oscillation
damping-measurementtechnique. It should be pointed out that a somewhat
similar presentation is given in reference i0 for a cantilever wing
oscillating in the first bending mode.

The system considered here is a flexible beamhaving running
mass m(x) and stiffness El(x) which is attached to two soft linear
springs kI and k2 at longitudinal coordinates xI and x2. The
system is excited by a sinusoidal force F(t) applied perpendicular to
the beamcenter line at longitudinal station x3. In addition to the
force F(t) and the inertia and spring force loading due to the motion
of the beam, the beamis subjected to a running aerodynamic shear
loading W(x,t). The system is presented schematically in sketch i.
The x,y coordinate system is fixed relative to the undisturbed beam.

y /"

Sketch i

I
F(t)

_x

In the absence of the driving force F(t) and the aerodynamic

loading W(x,t) the differential equation which defines the transverse

bending free-vibration characteristics for the undamped system is

___l(x)_2y(x, t)

_x 2 _x 2
*k I y(x,t) 5(X-Xl) + k 2 y(x,t) 5(x--x2) = -m(x) 32y(x't)

_t 2
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where the function 5(X--Xn) is a Dirac function with the property that

J0 L 5(X--Xn) dx = Y(Xn,t )
y(x,t)

The displacement function y(x,t) may be expanded into a series of prod-

ucts of time and space functions.

co

y(x,t) = _ am(t ) hm(X ) (A3)
m=l

By choosing the normal modal functions of the system defined by equa-

tion (AI) for the space functions hm(X ) and applying a Galerkin proce

dure along with the appropriate orthogonality conditions, equation (AI)

becomes a set of equations:

M s,m'_m(t) + a_n2Ms ,mare(t) : 0 (m = i, 2, 3, • • -) (A4)

_0 Lwhere the generalized mass Ms, m is m(x) hm2(x)dx and _L_n is

the natural frequency of vibration of the mth mode of the system defined

by equation (A_I). A viscous-type structural damping may be included by

adding a term Bmam(t).

Ms,m/m(t ) + Bm_(t ) + _m2Mmam(t) = 0 (m = i, 2, 3, • .) (Ag)

Now with the sinusoidal force F(t) = Foei_°t applied to the damped

system at the point x = x3, the set of equations of motion is

_0 LMs,m_n(t ) + Bm_n(t ) + _m2Ms,mam(t) = F(t) hm(X) 5(x--x3) dx

= F(t) hm(X3) (m = i, 2, 3, • - -) (A6)
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The deflection shape assumed by the beam after all transient motion has

subsided is

y(x,t) = _ F(t) hm(x3)hm(X)

m=l (c_ -_b2)Ms,m + iBm

(A7)

If the displacement function y(x;t) were plotted against _ there

would be n peaks associated with _ : _n" Each of these peaks would

have a shape very similar to that found for a lightly damped mass oscil-

lator. For reasonably well separated frequencies _J_,

fin _ mm (A8)

Associated with each of these resonance frequencies _n, there will be a

particular deflection shape. The shapes are given by equation (A7) when

= _n. The function Yn(X,t) may be separated into the product of a

time and space function

Yn(X,t) = bn(t) Hn(X) (A9)

The function Hn(x ) may be thought of as a coupled-mode shape and the

frequency _n as the corresponding coupled-mode frequency. These modes

are coupled as a result of the damping forces and the shaker forces.

Because the structural damping is small, the coupled- and uncoupled-

mode shapes and frequencies are almost identical. These shapes and

frequencies may be calculated or measured experimentally. The latter

method was chosen for this investigation.

In this development the motion of the system will be examined only

at these coupled-mode resonance peaks. At the nth resonance condition

the potential energy of the system is 12-Knbn(t)2 where Kn may be

thought of as a generalized stiffness and is equal to

2 + kl n(Xl)2 + k2Hn(X2)2
2 j
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The kinetic energy of the system is 2!Ms,nbn(t)2 where

generalized mass and is equal to

fO L re(x) Hn2(X ) dx

Ms, n is a

The dissipation function associated with the assumption of viscous

structural damping is _s,nbn(t) 2 where Cs, n is the generalized

damping and is equal to

fO L Cs, n Hn2(X) dx

The virtual work associated with the external loads F(t) and

W(x,t) acting on the system through a virtual displacement 5bn(t ) Hn(x3)
is

5bn(t) F(t) Hn(x3) + 5WA (AIO)

Before the virtual work done by the aerodynamic forces can be expressed

more precisely than by 5WA, the nature of W(x,t) must be examined in

some detail. This loading may be separated into three categories.

The first is that due to the mean angle of attack _. Since this

portion of the aerodynamic loading is steady state and produces only

static deflections of the structure, it will not be treated further.

The second is of a random type being produced by turbulence 3 sepa-

rated flow_ and so forth. These random forces will produce random

deflections bn, r(t), velocities bn, r(t), and accelerations bn, r(t)

of the beam. The virtual work done by the random aerodynamic loading is

_0 L5bn(t) ' Wr(x,t ) Hn(X ) dx

where Wr(x,t ) is the random aerodynamic running shear load.
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The third type of aerodynamic loading is that due to the motion of

the beam itself. This portion of the aerodynamic loading may be sepa-

rated into three parts: inertia_ damping, and spring forces. It must

be assumed that the aerodynamic inertia and spring forces are reasonably

small relative to their structural counterparts, so that the mode shapes

will not differ appreciably from those measured with zero wind. The

virtual work done by these three aerodynamic forces is

L /oL-Sbn(t ) bn(t) AI, n Hn(x ) dx - 5b n bn(t) Ac, n Hn(X ) dx

Jo- 5bn(t ) bn(t ) AK, n Hn(X ) dx

where Al_n, Ac,n_ and AK, n are distribution functions of the inertial,

damping_ and stiffness components of the aerodynamic loading.

Combining these expressions the total aerodynamic virtual work is

where

5WA =-$bn(t)_MA3 n bn(t) + CA_ n bn(t) + KAjn bn(t)- Fr,n_

_0 LMA, n = AI, n Hn(x ) dx

foCA, n = Ac, n Hn(X ) dx

foKA, n = AK, n Hn(x ) dx

fo"Fr, n = Wr(x,t ) Kn(X ) dx

(All)
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By applying Lagrange's dynamical equation of motion, the differential

equation of motion of the system under the applied shaker and aerodynamic

loading is

s,n + MA, n n(t) + _n,r( + s,n + CA, n(t) + bn, r (t

..W

+ (Ks,n + KA_n)_n(t) + bn_r(t)_ =F(t)_j Hn(X3) + Fr_ n (AI2)

Multiplying equation (AI2) by F(t) and taking time averages yields

(Ms,n + MA, n)bn(t ) F(t)+ (Ms,n + MA, n)bn, r(t) F(t)

+ (Cs,n + CA, n)bn(t)F(t)+ ICs,n + CA, n)bn, r(t) F(t)

+ (Ks_n + KA#n)bn(t)F(t) + (Ks_n + KA#n)bn_r(t)F(t)

= En(X3) F(t)2 + Fr,n F(t) (A13)

where the bars indicate a time average over a period of time T. However_

as T approaches _, the products

Ms, n + MA, n)bn, r(t) F(t)

(Cs,n + CA, n)bn,r(t) F(t)

(Ks,n + KA_n) bn_r(t)_(t)

Fr, n F(t)

vanish since there is no correlation between the random part of the

response and the sinusoidal forcing function and thus the time average
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of the product of these quantities is zero. Also_ since the system is
being forced at resonance, the force is in phase with bn and is 90°
out of phase with bn and bn; therefore the products

/K
(Ms,n + MA_n) bn(t ) F(t)= L sjn + KA'n) bn(t) F(t) = 0

(AI4)

Consequently_

!

_Cs_n + CA, n)bn(t ) F(t) = Hn(X3) F(t) 2
(A 5)

or

Cs, n + CA, n = Hn(X>) F(t)2 (AI6)

bn(t) F(t)

The critical damping of the system is defined as

Ccr_n = 21(Ms_n + MA_n)(Ksjn + KA, n) = 2_n(Ms, n + MA, n) (AI7)

However, since ]VIA,n is small relative to Ms,n, the critical damping is

Ccr_n = 2_nMsp n

The frequency _n is the frequency of the system in the nth mode with

the external aerodynamic loading present. The ratio of total damping to

the critical damping is

CA, n + Cs_ n Hn(x3) F(t)2
(AI9)

Ccr, n bn(t) F(t) 2Ms, n _n
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If the sinusoidal force F(t) is applied by an electromagnetic
shaker_ it can be shownthat the current passing through the shaker
moving coil is proportional to the output force of the shaker.

F(t) = ql I (A20)

Also, the quantity bn(t) F(t) is proportional to the power consumedby
the shaker moving coil less any power losses due to coil resistance.

bn(t) F(t) : q2,n(P - 12R) (A2i)

Therefore, by using the relationship given by equation (A20), the expres-

sion for the damping ratio becomes

CA; n + Cs, n

Ccr, n q2;n(P- 12R)(2Ms_n kn)

(A22)

The aerodynamic damping ratio CAin is determined by measuring the

Ccr_n

structural damping ratio Cs'n in still air before each test and sub-

Ccr,n

tracting it as a tare from the total damping measured during the test.

It should be pointed out that external forces on the model can produce

coil velocities which induce correlated voltages and currents in the

electrical system. These currents are kept small; however, by driving

the shaker coil with a voltage generator that has an impedance which is

high with respect to that of the moving coil.
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__B

C_TED AERODYNAMIC DAMPING COEFFICIENTS

The theoretical model used here is a slender cone cylinder oscil-

lating harmonically about a mean angle of attack of 0° in its nth

transverse bending mode at frequency _n and with tip amplitude bn(t )

and normalized mode shape Hn(x). The theoretical model differs from

the experimental one in that the conical nose section is assumed to be

sharp. Since only the aerodynamic damping is desired, only those forces

generated by the vertical velocity bn(t) Hn(x) are considered.

The generalized force associated with the aerodynamic damping is

_0 LQh, n = bn(t) Ac, n Hn(X ) dx (BI)

where A c is the distribution of the aerodynamic damping forces per unit

length. The subscript n will be omitted hereafter since reference is

made only to a system oscillating in a single mode.

Using a quasi-steady approach the distribution function A c may be

expressed as

H(x)
A c = 2q_R(x) CN, _ V

(B2)

where R(x) is the function which describes the shape of the body, CN, _

is the section steady-state normal-force coefficient slope_ and H(x) is
V

a normalized angle of attack. Equation (BI) may now be written

LQl_ = pV CN, _ R(x) H2(x) b(t) (B3)

where the term in the brackets is CA .
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_L

CA = _pVj
0

or_ in nondimensional form_

cN,_ R(x)HA(x) (B$)

CA _pVr 2

Ccr 2Msh So (B5)

The theories of references 2 to 4 are readily adaptable to the quasi-

steady approach. In general_ the equation for the aerodynamic damping

coefficient (B4) will have to be integrated in two parts - one part for

the conical nose portion and one for the cylindrical afterbody. The

expressions for the section normal-force coefficient as predicted by the

methods presented in references 2 to 4 are presented in the following
table:

Theory

Second-order

Van Dyke

Second-order

piston

Second-order

shock expansion

Reference
CN, _ for the -

Conical nose

Exact solution for cone (ref. _)

Afterbody

0

l__
M_

G2 e-G2

The functions GI and G2 are functions of M_ and 8 alone and X

is a distance downstream from the cone-cylinder intersection. (See

appendix C of ref. 4.)

Another theory which lends itself readily to aerodynamic damping

calculations is the linear small-aspect-ratio unsteady-flow theory given

in reference 6. This theory gives for A c

(B6)
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The aerodynamic damping coefficient is

fo (B7)

Performing the integration in equation (BT) yields a very concise

expression for the aerodynamic damping

CA = _pVr2H(L) 2 (B8)

where H(L) is the value of the normalized deflection shape at the rear

of the model_ and r is the radius of the cylindrical portion of the
model.

In reference 7 Bond and Packard present an analysis based on a

slender-body approximation, the solution of which is obtained in a defi-

nite integral that has not been found to be integrable in finite form.

Evaluation of the integral has been accomplished by numerical methods_

and the computation forms have been programed for the IBM 704 data

processing machine for certain cases.

The analysis of reference 7 has been used by the Ames Research

Center to calculate values of the damping force coefficient C_ for the

first two flexible modes of model configuration i at supersonic Mach
numbers.

The results of those calculations are presented in figures 8 and 9

along with the results of the other theoretical approaches used.
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TABLE I.- EXPERIMENTALLY DETERMINED NATURAL MODE SHAPES

OF MODEL CONFIGURATIONS TESTED (NORMALIZED ON NOSE

OF CONFIGURATIONS 1 AND 2)

-o.o19
0

.lO

.20

.25

.3o

.35

.40

.50

.60

.69

.70

.75

.80

.85

.90
1.00

Normalized deflections

Configuration i

Mode i Mode 2

1.000

.620

.235

.050

-.i25

-.273

-.385 -.417

-.478 -.o73

-.41o .335

-.316 .450

-.197 .476

-.o38 .388

•133 .225

.320 .002

•517 -.263

.93o -.95o

Configuration 2,

i .000

.462

-.095

-. 306

-.45z

- .494

mode i

1.000

.564

•125
-.095
-.3o3

-.472

-.596

- .712

- .644

- .553

- .417

- .239

- .oi8

.209

.438

.895

Configuration 3,

mode i

i .o91
i .000

.577

.155

-.055

- .231

-.368
- .461

-.538
-•447

-.338
- .184

o

.i95
•398
.606

i. 049
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TABLE II.- PHYSICAL PROPERTIES OF MODEL CONFIGURATIONS TESTED

Range of x/L

-0.0183 to 0

0 to .0136
.0136 to .0271

.0271 to •0550

.0550 to .0818

Mass per unit length, ib-sec2/ft 2, for -

.0818 to .0958

.0958 to .1355
•1355 to .1542
.1542 to •1682
.1682 to •1720

.1720 to .2172

.2172 to .2312
•2312 to .2579
•2579 to .2748
•2748 to .3302

.3_02 to •3442

.3442 to .4121
•4121 to .4291
.4291 to .5000
.5000 to .5140

.5140 to .5845

.5845 to .5985
•5985 to .6700
.6700 to .6870

.6870 to .7475

•7475 to .7620
.7620 to .7800

.7800 to .8460

.8460 to .8550

.8550 to .8870

.8870 to .9000

.9000 to .9460

.9460 to .9600

.9600 to i•0000

Total weight, ib .............
Generalized mass, ib-sec2/ft, mode i . . .
Generalized mass, lb-sec2/ft, mode 2 . • .

Natural frequency, cps, mode 1 ......
Natural frequency, cps, mode 2 ......
Critical damping, lb-sec/ft, mode 1 . . .
Critical damping, lb-sec/ft, mode 2 . . .

Configuration i

o.o155
.o155

.o155

.o155

.4385

.o155

.1650

.8975
•0155

.0155
•7485

.0155

.0155

.0155

•8375
.0155
.8695

•0155
.8735

•0155
.8725
•0155

•8125
•0155

•1247
.6260

.0155

.0607

.0155

1•1275
.0155
•2257
•0155

19 •68
0.1081

O.0740
85
223
115
2O8

Configuration 2

0.0155

•0155
.0155
.0Z55

.0953

.0155
•1650
.1175
•0155

.0155

.0795

.0155

.0155

•0155

•0995
•0155

•0595
.0155
•1335

.0155

.O6O5

.0155

.0995

.0155

.1247

.0630

.0155

.0607
•0155

.0595

.0155
•2257
.0155

4.76
o.o596

159.o

79.2

Configuration 3

o.o18o
•0414

•O598
.O348
•0428

•4700
•0504
•2000

1.o362
•1424

.o453
•7761
•0416

.o296
•o155

.8375

.o155

.8695
•0155
•8735

.o155
•8725

.0155
•8125
.0155

.1247
•6260

•0155
.0607

.o155

1.1275
•o155
.2257
•o155

21.29
0.1269

79
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( a ) General view of model and sting assembly. L-61- 1191.1 
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(b) Detailed view of sting in vicinity of shaker . L-61-1192.1 

Figure 1.- Photograph of basic model and sting . 
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Configurations 1 and 2 
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12 . 0 
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Configuration 3 
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shell 
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Longitudinal section t hrough nose cap of configuration 3 

Figure 2 .- Geometry of configurations tested. All dimensions are in 
inches except as noted. 



Figure 3. - Photograph of flex springs used to support model on sting. L- 6l- ll93 
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Figure 4. - Photograph of basic model mounted in Langley Unitary Plan wind tunnel . 
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HI(x)

1.0 (

-I.0

0 Neasured
Uniform beam

\n

0

__/" j

0 .2 .4 ._

x/L

.8

/
/
)

1.0

(a) Configuration i; first mode; average Cs/Ccr , 0.0084;

model frequency, 85 cps; uniform beam frequency, 84 cps.

1.0

0

-I.0

O Measured

Uniform beam

\

o .2 .4 .6 .8 I.o

(b) Configuration i;

model frequency,

x/L

second mode; average Cs/Ccr , 0.011;

223 cps; uniform beam frequency, 213 cps.

Figure 5.- Comparison of measured mode shapes with those of uniform

free-free beam.
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1.0

HI(x) 0

2.0

1.0

0

\

0 .2

(c) Configuration 2;

model frequency,

O

H2(x) 0

\

Measured
Uniform beam

'%%_ _>
()

•4 .6

x/L

.8

first mode; average Cs/Ccr , 0.0094;

159 cps; uniform beam frequency, 171 cps.

Measured
Uniform beam

_ C_..- -I_

0 .2 .4 .6 .8

x/L

/

1.0

1.0

(d) Configuration 3; first mode; average Cs/Ccr , 0.0111;

model frequency, 79 cps; uniform beam frequency, 81 cps.

Figure 5.- Concluded.
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.O2

C s

Ccr .01

•01 .o2 .o3 .o4 .o5

Tip amplitude, in

(a) Variation of structural damping coefficient with model

amplitude for constant model skin temperature.

•O2

C s
m

Ccr
•Ol

o_
_o_ __o__ ___ 4>--_ > -o(>o-----43 o

80 85 90 95 I O0

Model skin temperature, OF

(b) Variation of structural damping coefficient with model

skin temperature for constant model amplitude.

Figure 7.- Representative structural damping calibration curves.
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•020

•016

.012

CA+ Cs

Ccr

.008

.oo4

Moo

o O.80
.95

0 i.o8
1.20

U 1.76

-o 2.15
2.5o

[7 2.87

Open symbols - power method

Solid symbols - free decay

[]

0

_---Cs/Ccr

i I i I J

0 .5 1.0 1.5 2.0 2.5

_V, ib-sec/ft 3

(a) Variation of total damping ratio with flow parameter.

Figure 8.- Damping measurements on model configuration i vibrating in

the first free-free mode.
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c_

4.0

3.0

2.0

1. O

0 Power method

• Free decay

Piston theory, Ref. 3

Momentum, Ref. 6

--- -- 2d order shock expansion, Ref. h

2d order Van Dyke, Ref. 2

--43-.--- Bond-Packard, R_f. 7

O •

0 0 0

o @o
_Q_

0

y o

o .7 l.o 1.5 2.o 2.5
M_

I
3.0

(b) Variation of aerodynamic damping derivative with Mach number.

CA__= C_ i__.
Ccr L:_k

Figure 8.- Concluded.
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CA+ Cs

Ccr

.020

•016

•012

•oo8

•004

0 0.80 _ 1.76

[] .9O 0 2.15

Ql.OO 0 2.5o
A1.08 _2.87

1.2o

CJCcl..

Open symbols - power method

Solid symbols - free decay

0 0
[] <>

L_ _ 0 _ 0

(Power method) II

II ,i,
ii

, I I I I i

o .5 1.o 1.5 2.0 2.5

p V, Ib-sec/ft3

(a) Variation of total damping ratio with flow parameter.

Figure 9-- Damping measurements on model configuration I vibrating in
the second free-free mode.
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• Free decay
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--{3 .... Bond-Packard, Ref. 7
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O

O
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/
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(b) Variation of aerodynamic damping derivative with Mach number.

!
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Figure 9.- Concluded.
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CA+ C s

Ccr

.020

•016

•012

.008

•oo4

0 0.80
[] .95
<_ 1.o8

1.20

_--_ Cs/Ccr

®

l I [ I |

o 0.5 1,o 1.5 2.0 2.5
oV

(a) Variation of total damping with flow parameter. Power method.

c_

3.0

2.0

1.0

O Power method

• Calculated from experimentally
determined static pressure distributions, Rel. 9

_Momentum theory, Ref. 6

o 8 oo O
© 0 0

"V_ f J I t t ,

0 .7 .8 .9 1.0

Moo

I.I 1.2

(b) Variation of aerodynamic damping derivative with Mach number.

Figure i0.- Results of damping measurements on model configuration 2

vibrating in the first free-free mode.
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