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A PRELIMINARY STUDY OF THE

EFFECTS OF VORTEX DIFFUSERS (WINGLETS)

ON WING FLUTTER

By Robert V. Doggett, Jr., and Moses G. Fa--mer

SU11MARY

Some experimental flutter results are presented for a simple, flat-
plate wing model and for the same wing model equipped with two different
upper surface vortex diffusers over the Mach number range from about 0.70
to 0.95. Both vortex diffuser3 had the same planform, but one weighed
about 0.3 percent of the basic wing weight, whereas the other weighed about
1.8 percent of the wing weight. The addition of the lighter vortex diffuser
reduced the flutter dynamic pressure by about 3 percent; the heavier vortex
diffuser reduced the flutter dynamic pressure by about 12 percent. The
experimental flutter results are compared at a Mach number of 0.80 with
analytical flutter results obtained by using doublet lattice and lifting
surface (}-ernel function) unsteady aerodynamic theories.

INTRODUCTION

Currently there is considerable interest in reducing aircraft fuel
consumption. One way to reduce aircraft fuel usage is through improved
aerodynamic efficiency. Some recent work at the Langley Research Center
has indicated that significant reductions in induced drag-due-to-lift can be
achieved by the addition of small nearly vertical wing-like surfaces called
vortex diffusers (sometimes referred to as winglets) at the tip of the main
wing. Some results from vortex diffuser studies are presented in references
1 and 2. An attractive feature of vortex diffusers is that they can not
only be incorporated in new aircraft designs but also have the potential
for use as a modification to current designs. However, the addition of
vortex diffusers to current designs does raise the question of what are
the structural and dynamic implications. A specific question that must be
addressed is the effects of vortex diffusers on flutter. Consequently,
some wind-tunnel flutter model studies were made in the Langley transonic
dynamics tunnel using a relatively simple cantilever, flat-plate wing model
that was tested with and without upper surface vortex diffusers. The purpose
of this paper is to present the results from this study. It should be
pointed out that the'latest vortex diffuser aerodynamic studies indicate
the desirability of having both upper surface and lower surface vortex
diffusers.--a large one mounted rearward on the upper surface at the wing tip,
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and a smaller one mounted forward on the lover usrface at the tip. Lower
surface vortex diffusers were not included in the present stud y. The basic
wing motel used here had a planform representative of current subsonic
transport designs. The same wing model was tested with and without two
different vortex diffusers. The vortex diffusers were, like the wing,
flat-plate models and weighed about 0.3 percent and 1.8 percent of the basic
wing weight, respectively. Experimental flutter results are presented over
the Mach number range from about 0.70 to 0.95. Some experimental results
are compared with analytical results obtained using doublet-lattice and
lifting surface (kernel function) unsteady aerodynamic theories.

SYMBOLS

b 	 reference semiehord

£	 frequency

f 
	 flutter frequency

f 	 reference frequency, measured frequency of third natural mode

m	 mass

q	 dynamic pressure, 1/2 PV 

V	 velocity

VI	flutter-speed index parameter, V/(brrZ)
v	 reference volume

u	 mass-ratio parameter, mpv

P	 density

W 	 reference circular frequency, 2nfr

Subscripts:

c	 calculated

e	 experimental
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MODELS

Description

The basic wing model configuration used in this investigation was a
semispan aspect ratio 6.37 wing with no dihedral, a leading-edge sweep of

AL
	 38.20, and a taper ratio of 0.20. Two other models, consisting of the basic

configuration with an upper surface vortex diffuser, were tested in an effort
to determine the vortex diffuser effects on the basic wing flutter
characteristics. It should be pointed out that since the vortex diffusers
used here were uncambered, nonlifting surfaces, only the planform aerodynamic
effects and structural mass and stiffness effects of the diffusers were
evaluated. The primary difference between the two vortex diffusers was in
structural mass and stiffness. One weighed about 0.3 percent, and the other
weighed about 1.8 percent of the basic wing weight. The two vortex diffuser
configurations will be referred to hereafter as the light diffuser model
and the heavy diffuser model, respectively. The vortex diffusers were
mounted aft on the wing tip chord and were canted outward 17-1/2 0 from a
plane perpendicular to the plane of the wing. The vortex diffuser had a
39 . 9° leading edge sweepback, a 0.33 taper ratio, and a 5.00 aspect ratio.

A photograph of the heavy diffuser model mounted in the wind tunnel is
presented in figure 1. Sketches giving the geometric properties of the wing
and vortex diffuser are presented in figure 2.

The models were constructed of constant thickness aluminum alloy plate.
The plate thicknesses were 0.4826 cm (0.190 in.) for the wing, 0.0813 cm
(0.032 in.) fcr the light diffuser, and 0.4826 cm (0.190 in.) for the heavy
diffuser. The leading edges of the plate models were rounded, and the
trailing edges of t,ie wing and heavy diffuser were beveled. The flat plate
was extended inboard of the model root to provide a base for clamping the
models in a cantilever fashion along the forward 80 percent of the root chord.

The basic wing was instrumented with electric resistance-type strain
gages to measure dynamic response.

Physical Properties and Vibration

Characteristics

The total measured mass properties of the three models are presented in
table I. The first four natural frequencies were measured for the basic wing
and heavy diffuser models The first three frequencies were measured for the
light diffuser model. The measured values are given in table II along with
the first five calculated natural frequencies of the basic wing and heavy
diffuser models and the first seven calculated frequencies of the light
diffuser model. The corresponding calculated natural mode nodal patterns are

3



presented in figure 3. Also included in the figure are the measured node
lines for the first four basic wing model modes and the first three heavy
diffuser model modes. The calculated and measured nodal patterns are very
similar. The measured node lines were obtained by the 1G sand method. The
calculated modal data were obtained by using the NASA Structural Analysis
(NASTRAN) Computer Program (references 3 and 4). Quadrilateral structural
finite elements (NASTRAN QUAD2) were used to model the structure. Ninety
elements were used for the wing portion of all three models; 27 elements were
used for the diffusers. The arrangement of the dements is shown in figure 4.

FLUTTER EXPERIMENTS

Wind Tunnel

This investigation was conducted in the Langley transonic dynamics
tunnel. The tunnel has a 4.88m (16-foot) square test section with cropped
corners. The tunnel is a slotted-throat, single-return wind tunnel equipped
to use either air or Freon-12 as the test medium at stagnation pressures
from near vacuum to about atmospheric at Mach numbers up to 1.2. Only
Freon-12 was used for the present investigation. The tunnel is of the
continuous-operation type and is powered by a motor-driven fan. Both test-
section Mach number and density are continuously controllable. The tunnel is
equipped with four quick-opening bypass valves which can be operated to
rapidly reduce test section dynamic pressure and Mach number when flutter
occurs.

Test Procedure

The same general procedure was used for all the tests. The determination
of a typical flutter point Proceeded as follows: With the tunnel evacuated to
a low stagnation pressure, the fan speed was increased until the desired.
test-section Mach number was reached. The test-section roach number was then

01	 held nearly constant, and the test-section density was gradually increased
by bleeding Freon-12 into the tunnel through an expansion valve until flutter
was reached. The test-section dynamic pressure and Mach number were then
rapidly decreased by opening the four bypass valves. The actuation of the
bypass valves also locked the tunnel instruments so that the tunnel conditions
necessary to completely describe the flutter point could be recorded after
precautions had been taken to save the model. The compressor speed was then
decreased to a point well below the flutter condition, and the bypass valves
were closed. This process was repeated several times to define the flutter
boundary over the Mach number range of interest.

During each flutter condition the outputs from the bending and torsion
resistance wire strain gages mounted near the model root were recorded on a
recording oscillograph. * From these oscillograph records the flutter frequen-
cies were determined. The first three natural frequencies were obtained for
each model before and after each tunnel test to determine whether or not the
model had been damaged.

R^^A' y ^^0	 41
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FLUTTER ANALYSIS

Flutter calculations were made for all three models at 0.80 Mach number.
The flutter equations in matrix notation were expressed in terms of general-
ized modal coordinates, and the traditional V-g method of solution, automated
essentially as described in reference 5, was used. The calculated natural
frequencies and mode shapes were used in the analysis. The first five modes
were used for the basic wing and the heavy diffuser models; the first seven
modes were used for the light diffuser model. Surface spline functions
(ref. 9) were used to interpolate the calculated modal deflections to the
modal displacements and streamwise slopes required to determine the unsteady
aerodynamic forces. Calculations were made using both doublet-lattice
unsteady aerodynamic forces (references 6 and 7) and subsonic lifting-surface
theory (ref. 8). The doublet-lattice paneling arrangement consisted of
186 boxes on the wing and 72 boxes on the diffuser arranged as shown in
figure 5. The locations of the 36 subsonic °ifting-surface (kernel function)
collocation points used are indicated by the :solid circle symbols in
figure 5. In the kernel function calculations no aerodynamic effects of the
diffusers were included. Doublet-lattice calculations were made with and
without diffuser aerodynamic effects included.

RESULTS AND DISCUSSION

The basic experimental flutter results are presented in figure 6 as the
variations with "iach number of the mass-ratio parameter u, of the flutter-
frequency ratio ffIfr , and of the flutter-speed index parameter VI . The

mass-ratio parameter u is defined as the ratio of the total model mass to
the mass of a representative surrounding volume of test medium. The volume
used here is that contained in the conical frustums generated by revolving
each wing chord (and vortex diffuser chord) about its midpoint. These

volumes were 6.926 x 104 cm 3 (4226.4 in. 3 ) for the basic wing model and

6.946 x loo cm3 (4238.8 in. 3 ) for both vortex diffuser configurations. The
third measured natural fre quency was used . as the reference frequency fr.

The semichord at the basic wing three-quarter span station was used as the
reference length br . This length was 9.36 cm (3.685 in.). The flutter-
speed-index-parameter curves represent stability boundaries with the stable
region below the curve. This parameter depends on the physical properties
of the model, in particular the stiffness, and the atmosphere in which it
operates. When plotted as the ordinate against Mach number, constant dynamic

-	 pressure lines are parallel to the Poach number abscissa.

No unusual trends are shown by the data presented in figure 6 for all
three configurations studied. The flutter boundaries are similar to those
usually observed, namely, a gradual decrease in flutter speed occurs as
the subsonic Mach number is increased. Flutter data were not obtained at
sufficiently high Mach numbers to define the minimum flutter speed which

5
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usually occurs in the transonic regime.

A comparison of the flutter boundaries for all three models may be
made by examining the data presented in figure 7 where the variations of
flutter-speed-index parameter and flutter dynamic pressure with Mach number
are shown. Note that the addition of the vortex diffusers to the basic
wing did have an adverse effect on the flutter characteristics, the heavier
the vortex diffuser the greater the effect. In general, the addition of the
light and heavy vortex diffusers resulted in flutter dynamic pressure
reductions over the Mach number range studied of about 3 percent and
12 percent, respectively.

Flutter analyses were made at M = 0.80 for all three model configura-
tions by using kernel function and doublet lattice unsteady aerodynamic
theories. The density values used in the calculations were obtained by
interpolating the mass ratio curves in figure 6. The analytical results are
presented in figure 8 as the variation of the ratio of flutter frequency to
reference frequency and of dynamic pressure versus vortex diffuser weight
relative to wing weight. The experimental results (plotted from the curves
in figures 6 and 7 for M- = 0.60) for this Mach number are also included in
the figure. Kernel function results are presented where only wing unsteady
aerodynamic forces were included. That is, only the structural effects of
the vortex diffusers were included in the analysis. Doublet lattice results
are presented both with and without vortex diffuser unsteady aerodynamic
forces included. It should be noted that all of the analytical results are
in good agreement with their corresponding experimental results (less than
10-percent variation in flutter frequency and less than 5-percent variation
in dynamic pressure). However, only the kernel function results show the
same trend that was found experimentally, namely, a decrease in flutter
dynamic pressure with increasing vortex diffuser weight.

CMCLUDING RMARKR

The effects of the addition of two different upper surfs ,^e vortex
diffusers at the tip of a basic wing have been determined experimentally
over the Mach number range from about 0.70 to 0.95 in the Langley transonic
dynamics tunnel. The cantilever -mounted flat-plate wing had a planform
representative of subsonic transport aircraft. The two flat -plate vortex
diffusers had the same planform and differed from one another in mass and
stiffness. One weighed about 0 . 3 percent of the basic wing weight, the other
about 1.8 percent. The addition of the lighter vortex diffuser reduced the
wing flutter dynamic pressure by about 3 percent; the addition of the heavier
vortex diffuser produced about a 12-percent reduction. The experimental
results were compared at bt = 0 . 80 with calcula ,̂ ed results obtained by using
kernel function and doublet lattice unsteady aerodynamic theor ' , s. Although
the individual calculated results were in good agreement with corresponding
experimental results fbr all three model configurations, only the kernel
function results showed the systematic decrease in flutter dynamic pressure
found experimentally with increasing vortex diffuser weight.
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MODE 4	 NODE 5

(a) Basic wing model.

Figure 3,- Calculated and measured node lines.
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(b) Eight vortex diffuser model.

Figure 3.- Cantu-.



(b) Concluded.

Figure 3.- Continued.
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(c) Heavy vortex diffuser model.

Figure 3.- Concluded.
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Figure 5.- Aerodynamic model.
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(a) Basic wing model.

Figure 6.- Experimmtal flutter results.
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