204 research outputs found
Skin thickness of the anterior, anteromedial, and anterolateral thigh: a cadaveric study for split-skin graft donor sites
Background:
The depth of graft harvest and the residual dermis available for reepithelization primarily influence the healing of split-skin graft donor sites. When the thigh region is chosen, the authors hypothesize based on thickness measurements that the anterolateral region is the optimal donor site.
Methods:
Full-thickness skin specimens were sampled from the anteromedial, anterior, and anterolateral regions of human cadavers. Skin specimens were cut perpendicularly with a custom-made precision apparatus to avoid the overestimation of thickness measurements. The combined epidermal and dermal thicknesses (overall skin thickness) were measured using a digital calliper. The specimens were histologically stained to visualize their basement membrane, and microscopy images were captured. Since the epidermal thickness varies across the specimen, a stereological method was used to eliminate observer bias.
Results:
Epidermal thickness represented 2.5% to 9.9% of the overall skin thickness. There was a significant difference in epidermal thickness from one region to another (P<0.05). The anterolateral thigh region had the most consistent and highest mean epidermal thickness (60±3.2 µm). We observed that overall skin thickness increased laterally from the anteromedial region to the anterior and anterolateral regions of the thigh. The overall skin thickness measured 1,032±435 µm in the anteromedial region compared to 1,220±257 µm in the anterolateral region.
Conclusions:
Based on skin thickness measurements, the anterolateral thigh had the thickest epidermal and dermal layers. We suggest that the anterolateral thigh region is the optimal donor site for split-skin graft harvests from the thigh
Waring's Problem in Finite Rings
In this paper we obtain sharp results for Waring's problem over general
finite rings, by using a combination of Artin-Wedderburn theory and Hensel's
lemma and building on new proofs of analogous results over finite fields that
are achieved using spectral graph theory. We also prove an analogue of
S\'ark\"ozy's theorem for finite fields.Comment: 34 page
Carboxypeptidase O is a Lipid Droplet-associated Enzyme Able to Cleave both Acidic and Polar C-terminal Amino Acids
Carboxypeptidase O (CPO) is a member of the M14 family of metallocarboxypeptidases with a preference for the cleavage of C-terminal acidic amino acids. CPO is largely expressed in the small intestine, although it has been detected in other tissues such as the brain and ovaries. CPO does not contain a prodomain, nor is it strongly regulated by pH, and hence appears to exist as a constitutively active enzyme. The goal of this study was to investigate the intracellular distribution and activity of CPO in order to predict physiological substrates and function. The distribution of CPO, when expressed in MDCK cells, was analyzed by immunofluorescence microscopy. Soon after addition of nutrient-rich media, CPO was found to associate with lipid droplets, causing an increase in lipid droplet quantity. As media became depleted, CPO moved to a broader ER distribution, no longer impacting lipid droplet numbers. Membrane cholesterol levels played a role in the distribution and in vitro enzymatic activity of CPO, with cholesterol enrichment leading to decreased lipid droplet association and enzymatic activity. The ability of CPO to cleave C-terminal amino acids within the early secretory pathway (in vivo) was examined using Gaussia luciferase as a substrate, C-terminally tagged with variants of an ER retention signal. While no effect of cholesterol was observed, these data show that CPO does function as an active enzyme within the ER where it removes C-terminal glutamates and aspartates, as well as a number of polar amino acids
COVID-19 and anatomy: Stimulus and initial response.
The outbreak of COVID-19, resulting from widespread transmission of the SARS-CoV-2 virus, represents one of the foremost current challenges to societies across the globe, with few areas of life remaining untouched. Here, we detail the immediate impact that COVID-19 has had on the teaching and practice of anatomy, providing specific examples of the varied responses from several UK, Irish and German universities and medical schools. Alongside significant issues for, and suspension of, body donation programmes, the widespread closure of university campuses has led to challenges in delivering anatomy education via online methods, a particular problem for a practical, experience-based subject such as anatomy. We discuss the short-term consequences of COVID-19 for body donation programmes and anatomical education, and highlight issues and challenges that will need to be addressed in the medium to long term in order to restore anatomy education and practice throughout the world
Screening of Exosomal MicroRNAs From Colorectal Cancer Cells
BACKGROUND: Cells release extracellular membrane vesicles including microvesicles known as exosomes. Exosomes contain microRNAs (miRNAs) however the full range within colorectal cancer cell secreted exosomes is unknown. OBJECTIVE: To identify the full range of exosome encapsulated miRNAs secreted from 2 colorectal cancer cell lines and to investigate engineering of exosomes over-expressing miRNAs. METHODS: Exosomes were isolated from HCT-116 and HT-29 cell lines. RNA was extracted from exosomes and microRNA array performed. Cells were engineered to express miR-379 (HCT-116-379) or a non-targeting control (HCT-116-NTC) and functional effects were determined. Exosomes secreted by engineered cells were transferred to recipient cells and the impact examined. RESULTS: Microvesicles 40-100 nm in size secreted by cell lines were visualised and confirmed to express exosomal protein CD63. HT-29 exosomes contained 409 miRNAs, HCT-116 exosomes contained 393, and 338 were common to exosomes from both cell lines. Selected targets were validated. HCT-116-379 cells showed decreased proliferation (12-15% decrease, p \u3c 0.001) and decreased migration (32-86% decrease, p \u3c 0.001) compared to controls. HCT-116-379 exosomes were enriched for miR-379. Confocal microscopy visualised transfer of HCT-116-379 exosomes to recipient cells. CONCLUSIONS: Colorectal cancer cells secrete a large number of miRNAs within exosomes. miR-379 decreases cell proliferation and migration, and miR-379 enriched exosomes can be engineered
Opposing Effects of Particle Pollution, Ozone, and Ambient Temperature on Arterial Blood Pressure
Background: Diabetes increases the risk of hypertension and orthostatic hypotension and raises the risk of cardiovascular death during heat waves and high pollution episodes
Neutralisation of SARS-CoV-2 by anatomical embalming solutions.
Teaching and learning anatomy by using human cadaveric specimens has been a foundation of medical and biomedical teaching for hundreds of years. Therefore, the majority of institutions that teach topographical anatomy rely on body donation programmes to provide specimens for both undergraduate and postgraduate teaching of gross anatomy. The COVID-19 pandemic has posed an unprecedented challenge to anatomy teaching because of the suspension of donor acceptance at most institutions. This was largely due to concerns about the potential transmissibility of the SARS-CoV-2 virus and the absence of data about the ability of embalming solutions to neutralise the virus. Twenty embalming solutions commonly used in institutions in the United Kingdom and Ireland were tested for their ability to neutralise SARS-CoV-2, using an established cytotoxicity assay. All embalming solutions tested neutralised SARS-CoV-2, with the majority of solutions being effective at high-working dilutions. These results suggest that successful embalming with the tested solutions can neutralise the SARS-CoV-2 virus, thereby facilitating the safe resumption of body donation programmes and cadaveric anatomy teaching
Stochastic population growth in spatially heterogeneous environments
Classical ecological theory predicts that environmental stochasticity
increases extinction risk by reducing the average per-capita growth rate of
populations. To understand the interactive effects of environmental
stochasticity, spatial heterogeneity, and dispersal on population growth, we
study the following model for population abundances in patches: the
conditional law of given is such that when is small the
conditional mean of is approximately , where and are the abundance and per
capita growth rate in the -th patch respectivly, and is the
dispersal rate from the -th to the -th patch, and the conditional
covariance of and is approximately . We show for such a spatially extended population that if
is the total population abundance, then ,
the vector of patch proportions, converges in law to a random vector
as , and the stochastic growth rate equals the space-time average per-capita growth rate
\sum_i\mu_i\E[Y_\infty^i] experienced by the population minus half of the
space-time average temporal variation \E[\sum_{i,j}\sigma_{ij}Y_\infty^i
Y_\infty^j] experienced by the population. We derive analytic results for the
law of , find which choice of the dispersal mechanism produces an
optimal stochastic growth rate for a freely dispersing population, and
investigate the effect on the stochastic growth rate of constraints on
dispersal rates. Our results provide fundamental insights into "ideal free"
movement in the face of uncertainty, the persistence of coupled sink
populations, the evolution of dispersal rates, and the single large or several
small (SLOSS) debate in conservation biology.Comment: 47 pages, 4 figure
- …