480 research outputs found

    Detection of TeV emission from the intriguing composite SNR G327.1-1.1

    Full text link
    The shock wave of supernova remnants (SNRs) and the wind termination shock in pulsar wind nebula (PWNe) are considered as prime candidates to accelerate the bulk of Galactic cosmic ray (CR) ions and electrons. The SNRs hosting a PWN (known as composite SNRs) provide excellent laboratories to test these hypotheses. The SNR G327.1-1.1 belongs to this category and exhibits a shell and a bright central PWN, both seen in radio and X-rays. Interestingly, the radio observations of the PWN show an extended blob of emission and a curious narrow finger structure pointing towards the offset compact X-ray source indicating a possible fast moving pulsar in the SNR and/or an asymmetric passage of the reverse shock. We report here on the observations, for a total of 45 hours, of the SNR G327.1-1.1 with the H.E.S.S. telescope array which resulted in the detection of TeV gamma-ray emission in spatial coincidence with the PWN.Comment: Proceeding of the 32nd ICRC, August 11-18 2011, Beijing, Chin

    Multi-resolution analysis of the H.E.S.S. Galactic Survey Sources and Search for Counterparts in CO and HI data.

    Get PDF
    To appear in proceedings 29th International Cosmic Ray Conference (ICRC 2005)From May to July 2004, the central radian of the Galactic Plane was scanned by the H.E.S.S. (High Energy Stereoscopic System) telescopes at energies above 200 GeV. This survey was performed from -3o3^o to +3o3^o in latitude, for a total of 230 hours, revealing eight new VHE sources at a significance level greater than 6σ\sigma(standard deviations). We present a multi-resolution analysis of these sources based on a continuous wavelet transformation (CWT). Using CO and HI data, we investigate the possible associations of the potential counterparts proposed in [1], with sites of enhanced interstellar matter density

    H.E.S.S. observations of the Large Magellanic Cloud

    Full text link
    The Large Magellanic Cloud (LMC) is a satellite galaxy of the Milky Way at a distance of approximately 48 kpc. Despite its distance it harbours several interesting targets for TeV gamma-ray observations. The composite supernova remnant N 157B/PSR J05367-6910 was discovered by H.E.S.S. being an emitter of very high energy (VHE) gamma-rays. It is the most distant pulsar wind nebula ever detected in VHE gamma-rays. Another very exciting target is SN 1987A, the remnant of the most recent supernova explosion that occurred in the neighbourhood of the Milky Way. Models for Cosmic Ray acceleration in this remnant predict gamma-ray emission at a level detectable by H.E.S.S. but this has not been detected so far. Fermi/LAT discovered diffuse high energy (HE) gamma-ray emission from the general direction of the massive star forming region 30 Doradus but no clear evidence for emission from either N 157B or SN 1987A has been published. The part of the LMC containing these objects has been observed regularly with the H.E.S.S. telescopes since 2003. With deep observations carried out in 2010 a very good exposure of this part of the sky has been obtained. The current status of the H.E.S.S. LMC observations is reported along with new results on N 157B and SN 1987A.Comment: 4 pages, 3 figures, proceedings of the 32nd Internatioal Cosmic Ray Conference, Beijing 201

    Discovery of Very High Energy gamma - ray emission from the extreme BL Lac object H2356-309 with H.E.S.S

    Get PDF
    The understanding of acceleration mechanisms in active galactic nuclei (AGN) jets and the measurement of the extragalactic-background-light (EBL) density are closely linked and require the detection of a large sample of very-high-energy (VHE) emitting extragalactic objects at varying redshifts. We report here on the discovery with the H.E.S.S. (High Energy Stereoscopic System) atmospheric-Cherenkov telescopes of the VHE Gamma-ray emission from H2356 - 309, an extreme BL Lac object located at a redshift of 0.165. The observations of this object, which was previously proposed as a southern-hemisphere VHE candidate source, were performed between June and December 2004. The total exposure is 38.9 hours live time, after data quality selection, which yields the detection of a signal at the level of 9.0σ\sigma (standard deviations) .Comment: To appear on proceeding of 29th International Cosmic Ray Conference (ICRC 2005

    Discovery of very high energy gamma-ray emission in the W 28 (G6.4-0.1) region, and multiwavelength comparisons

    Full text link
    H.E.S.S. observations of the old-age (>10^4yr; ~0.5deg diameter) composite supernova remnant (SNR) W 28 reveal very high energy (VHE) gamma-ray emission situated at its northeastern and southern boundaries. The northeastern VHE source (HESS J1801-233) is in an area where W 28 is interacting with a dense molecular cloud, containing OH masers, local radio and X-ray peaks. The southern VHE sources (HESS J1800-240 with components labelled A, B and C) are found in a region occupied by several HII regions, including the ultracompact HII region W 28A2. Our analysis of NANTEN CO data reveals a dense molecular cloud enveloping this southern region, and our reanalysis of EGRET data reveals MeV/GeV emission centred on HESS J1801-233 and the northeastern interaction region.Comment: 4 pages, 3 figures, proceedings of the 30th ICRC, Merida, Mexico, 200

    Numerical simulations of composite supernova remnants for small σ\sigma pulsar wind nebulae

    Full text link
    Composite supernova remnants consist of a pulsar wind nebula located inside a shell-type remnant. The presence of a shell has implications on the evolution of the nebula, although the converse is generally not true. The purpose of this paper is two-fold. The first aim is to determine the effect of the pulsar's initial luminosity and spin-down rate, the supernova ejecta mass, and density of the interstellar medium on the evolution of a spherically-symmetric, composite supernova remnant expanding into a homogeneous medium. The second aim is to investigate the evolution of the magnetic field in the pulsar wind nebula when the the composite remnant expands into a non-uniform interstellar medium. The Euler conservation equations for inviscid flow, together with the magnetohydrodynamic induction law in the kinematic limit, are solved numerically for a number of scenarios where the ratio of magnetic to particle energy is σ<0.01\sigma < 0.01. The simulations in the first part of the paper is solved in a one-dimensional configuration. In the second part of the paper, the effect of an inhomogeneous medium on the evolution is studied using a two-dimensional, axis-symmetric configuration

    Discovery of the VHE gamma-ray source HESS J1641-463

    Full text link
    A new TeV source, HESS J1641-463, has been serendipitously discovered in the Galactic plane by the High Energy Stereoscopic System (H.E.S.S.) at a significance level of 8.6 standard deviations. The observations of HESS J1641-463 were performed between 2004 and 2011 and the source has a moderate flux level of 1.7% of the Crab Nebula flux at E > 1 TeV. HESS J1641-463 has a rather hard photon index of 1.99 +- 0.13_stat +- 0.20_sys. HESS J1641-463 is positionally coincident with the radio supernova remnant SNR G338.5+0.1, but no clear X-ray counterpart has been found in archival Chandra observations of the region. Different possible VHE production scenarios will be discussed in this contribution.Comment: 5 pages, 5 figures, 2012 Fermi Symposium proceedings - eConf C12102

    HESS-II reconstruction strategy and performance in the low-energy (20-150 GeV) domain

    Get PDF
    International audienceIn mid-2009 a notable upgrade of the H.E.S.S. telescope system will take place: a new telescope with a 600 m2 mirror area and very-high-resolution camera (0.07°) will be positioned at the centre of the present configuration, with the aim of lowering the threshold and enhance its sensitivity in the 100 GeV to several TeV energy range. HESS-II will permit the investigation of the lower energy gamma-ray spectra in various cosmic accelerators, giving information on the origin of the gamma-rays observed, and will detect AGNs with a redshift greater than 0.2 (being less affected by absorption by Extragalactic Background Light-EBL-in this energy range) and will search for new classes of very high energy gamma-ray emitters (pulsars, microquasars, GRB, and dark matter candidates)
    corecore