11,542 research outputs found

    Atmospheric effects on remote sensing of non-uniform temperature sources

    Get PDF
    The equations of transfer, for a plane-parallel scattering atmosphere with a point source of energy on the lower bounding surface, were solved for various values of sensor/point source orientation and optical depths. Applications of this analysis to Skylab and ERTS mission are discussed, and requirements for atmospheric property data and radiation transfer properties are considered

    Classical String in Curved Backgrounds

    Get PDF
    The Mathisson-Papapetrou method is originally used for derivation of the particle world line equation from the covariant conservation of its stress-energy tensor. We generalize this method to extended objects, such as a string. Without specifying the type of matter the string is made of, we obtain both the equations of motion and boundary conditions of the string. The world sheet equations turn out to be more general than the familiar minimal surface equations. In particular, they depend on the internal structure of the string. The relevant cases are classified by examining canonical forms of the effective 2-dimensional stress-energy tensor. The case of homogeneously distributed matter with the tension that equals its mass density is shown to define the familiar Nambu-Goto dynamics. The other three cases include physically relevant massive and massless strings, and unphysical tahyonic strings.Comment: 12 pages, REVTeX 4. Added a note and one referenc

    Speckle-visibility spectroscopy: A tool to study time-varying dynamics

    Get PDF
    We describe a multispeckle dynamic light scattering technique capable of resolving the motion of scattering sites in cases that this motion changes systematically with time. The method is based on the visibility of the speckle pattern formed by the scattered light as detected by a single exposure of a digital camera. Whereas previous multispeckle methods rely on correlations between images, here the connection with scattering site dynamics is made more simply in terms of the variance of intensity among the pixels of the camera for the specified exposure duration. The essence is that the speckle pattern is more visible, i.e. the variance of detected intensity levels is greater, when the dynamics of the scattering site motion is slow compared to the exposure time of the camera. The theory for analyzing the moments of the spatial intensity distribution in terms of the electric field autocorrelation is presented. It is demonstrated for two well-understood samples, a colloidal suspension of Brownian particles and a coarsening foam, where the dynamics can be treated as stationary. However, the method is particularly appropriate for samples in which the dynamics vary with time, either slowly or rapidly, limited only by the exposure time fidelity of the camera. Potential applications range from soft-glassy materials, to granular avalanches, to flowmetry of living tissue.Comment: review - theory and experimen

    Dynamics of test bodies with spin in de Sitter spacetime

    Full text link
    We study the motion of spinning test bodies in the de Sitter spacetime of constant positive curvature. With the help of the 10 Killing vectors, we derive the 4-momentum and the tensor of spin explicitly in terms of the spacetime coordinates. However, in order to find the actual trajectories, one needs to impose the so-called supplementary condition. We discuss the dynamics of spinning test bodies for the cases of the Frenkel and Tulczyjew conditions.Comment: 11 pages, RevTex forma

    Spinning test particles and clock effect in Schwarzschild spacetime

    Full text link
    We study the behaviour of spinning test particles in the Schwarzschild spacetime. Using Mathisson-Papapetrou equations of motion we confine our attention to spatially circular orbits and search for observable effects which could eventually discriminate among the standard supplementary conditions namely the Corinaldesi-Papapetrou, Pirani and Tulczyjew. We find that if the world line chosen for the multipole reduction and whose unit tangent we denote as UU is a circular orbit then also the generalized momentum PP of the spinning test particle is tangent to a circular orbit even though PP and UU are not parallel four-vectors. These orbits are shown to exist because the spin induced tidal forces provide the required acceleration no matter what supplementary condition we select. Of course, in the limit of a small spin the particle's orbit is close of being a circular geodesic and the (small) deviation of the angular velocities from the geodesic values can be of an arbitrary sign, corresponding to the possible spin-up and spin-down alignment to the z-axis. When two spinning particles orbit around a gravitating source in opposite directions, they make one loop with respect to a given static observer with different arrival times. This difference is termed clock effect. We find that a nonzero gravitomagnetic clock effect appears for oppositely orbiting both spin-up or spin-down particles even in the Schwarzschild spacetime. This allows us to establish a formal analogy with the case of (spin-less) geodesics on the equatorial plane of the Kerr spacetime. This result can be verified experimentally.Comment: IOP macros, eps figures n. 2, to appear on Classical and Quantum gravity, 200

    What do implicit measures measure?

    Get PDF
    We identify several ongoing debates related to implicit measures, surveying prominent views and considerations in each debate. First, we summarize the debate regarding whether performance on implicit measures is explained by conscious or unconscious representations. Second, we discuss the cognitive structure of the operative constructs: are they associatively or propositionally structured? Third, we review debates whether performance on implicit measures reflects traits or states. Fourth, we discuss the question of whether a person’s performance on an implicit measure reflects characteristics of the person who is taking the test or characteristics of the situation in which the person is taking the test. Finally, we survey the debate about the relationship between implicit measures and (other kinds of) behavior

    Hydro-without-Hydro Framework for Simulations of Black Hole-Neutron Star Binaries

    Full text link
    We introduce a computational framework which avoids solving explicitly hydrodynamic equations and is suitable to study the pre-merger evolution of black hole-neutron star binary systems. The essence of the method consists of constructing a neutron star model with a black hole companion and freezing the internal degrees of freedom of the neutron star during the course of the evolution of the space-time geometry. We present the main ingredients of the framework, from the formulation of the problem to the appropriate computational techniques to study these binary systems. In addition, we present numerical results of the construction of initial data sets and evolutions that demonstrate the feasibility of this approach.Comment: 16 pages, 7 figures. To appear in the Classical and Quantum Gravity special issue on Numerical Relativit

    Scattering of Spinning Test Particles by Plane Gravitational and Electromagnetic Waves

    Get PDF
    The Mathisson-Papapetrou-Dixon (MPD) equations for the motion of electrically neutral massive spinning particles are analysed, in the pole-dipole approximation, in an Einstein-Maxwell plane-wave background spacetime. By exploiting the high symmetry of such spacetimes these equations are reduced to a system of tractable ordinary differential equations. Classes of exact solutions are given, corresponding to particular initial conditions for the directions of the particle spin relative to the direction of the propagating background fields. For Einstein-Maxwell pulses a scattering cross section is defined that reduces in certain limits to those associated with the scattering of scalar and Dirac particles based on classical and quantum field theoretic techniques. The relative simplicity of the MPD approach and its use of macroscopic spin distributions suggests that it may have advantages in those astrophysical situations that involve strong classical gravitational and electromagnetic environments.Comment: Submitted to Classical and Quantum Gravity. 12 page

    On the motion of spinning test particles in plane gravitational waves

    Full text link
    The Mathisson-Papapetrou-Dixon equations for a massive spinning test particle in plane gravitational waves are analysed and explicit solutions constructed in terms of solutions of certain linear ordinary differential equations. For harmonic waves this system reduces to a single equation of Mathieu-Hill type. In this case spinning particles may exhibit parametric excitation by gravitational fields. For a spinning test particle scattered by a gravitational wave pulse, the final energy-momentum of the particle may be related to the width, height, polarisation of the wave and spin orientation of the particle.Comment: 11 page

    An axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime

    Full text link
    The problem of determining the electromagnetic and gravitational ``self-force'' on a particle in a curved spacetime is investigated using an axiomatic approach. In the electromagnetic case, our key postulate is a ``comparison axiom'', which states that whenever two particles of the same charge ee have the same magnitude of acceleration, the difference in their self-force is given by the ordinary Lorentz force of the difference in their (suitably compared) electromagnetic fields. We thereby derive an expression for the electromagnetic self-force which agrees with that of DeWitt and Brehme as corrected by Hobbs. Despite several important differences, our analysis of the gravitational self-force proceeds in close parallel with the electromagnetic case. In the gravitational case, our final expression for the (reduced order) equations of motion shows that the deviation from geodesic motion arises entirely from a ``tail term'', in agreement with recent results of Mino et al. Throughout the paper, we take the view that ``point particles'' do not make sense as fundamental objects, but that ``point particle equations of motion'' do make sense as means of encoding information about the motion of an extended body in the limit where not only the size but also the charge and mass of the body go to zero at a suitable rate. Plausibility arguments for the validity of our comparison axiom are given by considering the limiting behavior of the self-force on extended bodies.Comment: 37 pages, LaTeX with style package RevTeX 3.
    corecore