227 research outputs found

    Nano/Meso-scale principles and applications with flexibility: From delivery and self-recognition to differentiation

    Get PDF
    From viruses to tissue matrices, biology is filled with remarkable polymeric structures that motivate mimicry with goals of both clarifying and exploiting biological principles. Filamentous viruses inspired our development and computations of worm-like polymer micelles – ‘filomicelles’ – that persist in the circulation and deliver even better than spheres [1]. However, particles of any type interact with innate immune phagocytes while nearby ‘Self’ cells are spared due to a polypeptide that limits phagocytic clearance [2]. The phagocyte’s cytoskeleton forcibly drives the decision downstream of adhesion, proving analogous to how matrix elasticity directs stem cell fate [3, 4]. Key Words: block copolymer, self-assembly, shape, immunocompatability, differentiation References [1] Y. Geng, P. Dalhaimer, S. Cai, R. Tsai, M. Tewari, T. Minko, and D.E. Discher. Shape effects of filaments versus spherical particles in flow and drug delivery. Nature Nanotechnology (2007) 2: 249-255. [2] P.L. Rodriguez, T. Harada, D.A. Christian, D.A. Pantano, R.K. Tsai, and D.E. Discher. Minimal \u27Self\u27 peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science (2013) 339: 971-975. [3] A. Engler, S. Sen, H.L. Sweeey, and D.E. Discher. Matrix elasticity directs stem cell lineage specification. Cell (2006) 126: 677-689. [4] J. Swift, I.L. Ivanovska, … and D.E. Discher. Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-directed Differentiation. Science (2013) 341: 1240104-1 to 15

    Polymersomes

    Get PDF
    Polymersomes are self-assembled polymer shells composed of block copolymer amphiphiles. These synthetic amphiphiles have amphiphilicity similar to lipids, but they have much larger molecular weights, so for this reason — along with others reviewed here — comparisons of polymersomes with viral capsids composed of large polypeptide chains are highly appropriate. We summarize the wide range of polymers used to make polymersomes along with descriptions of physical properties such as stability and permeability. We also elaborate on emerging studies of in vivo stealthiness, programmed disassembly for controlled release, targeting in vitro, and tumor-shrinkage in vivo. Comparisons of polymersomes with viral capsids are shown to encompass and inspire many aspects of current designs

    Persistence-driven durotaxis: Generic, directed motility in rigidity gradients

    Get PDF
    Cells move differently on substrates with different elasticities. In particular, the persistence time of their motion is higher on stiffer substrates. We show that this behavior will result in a net transport of cells directed up a soft-to-stiff gradient. Using simple random walk models with controlled persistence and stochastic simulations, we characterize this propensity to move in terms of the durotactic index measured in experiments. A one-dimensional model captures the essential features of this motion and highlights the competition between diffusive spreading and linear, wavelike propagation. Since the directed motion is rooted in a non-directional change in the behavior of individual cells, the motility is a kinesis rather than a taxis. Persistence-driven durokinesis is generic and may be of use in the design of instructive environments for cells and other motile, mechanosensitive objects.Comment: 5 pages, 4 figure

    Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells

    Get PDF
    Phagocytosis of foreign cells or particles by macrophages is a rapid process that is inefficient when faced with “self” cells that display CD47—although signaling mechanisms in self-recognition have remained largely unknown. With human macrophages, we show the phagocytic synapse at cell contacts involves a basal level of actin-driven phagocytosis that, in the absence of species-specific CD47 signaling, is made more efficient by phospho-activated myosin. We use “foreign” sheep red blood cells (RBCs) together with CD47-blocked, antibody-opsonized human RBCs in order to visualize synaptic accumulation of phosphotyrosine, paxillin, F-actin, and the major motor isoform, nonmuscle myosin-IIA. When CD47 is functional, the macrophage counter-receptor and phosphatase-activator SIRPα localizes to the synapse, suppressing accumulation of phosphotyrosine and myosin without affecting F-actin. On both RBCs and microbeads, human CD47 potently inhibits phagocytosis as does direct inhibition of myosin. CD47–SIRPα interaction initiates a dephosphorylation cascade directed in part at phosphotyrosine in myosin. A point mutation turns off this motor's contribution to phagocytosis, suggesting that self-recognition inhibits contractile engulfment

    Elasticity of Developing Cardiac Tissue and Influence on Early Cardiomyocyte Beating

    Get PDF

    Deformation-Enhanced Fluctuations in the Red Cell Skeleton with Theoretical Relations to Elasticity, Connectivity, and Spectrin Unfolding

    Get PDF
    To assess local elasticity in the red cell’s spectrin-actin network, nano-particles were tethered to actin nodes and their constrained thermal motions were tracked. Cells were both immobilized and controllably deformed by aspiration into a micropipette. Since the network is well-appreciated as soft, thermal fluctuations even in an unstressed portion of network were expected to be many tens of nanometers based on simple equipartition ideas. Real-time particle tracking indeed reveals such root-mean-squared motions for 40-nm fluorescent beads either tethered to actin directly within a cell ghost or connected to actin from outside a cell via glycophorin. Moreover, the elastically constrained displacements are significant on the scale of the network’s internodal distance of ~60-80 nm. Surprisingly, along the aspirated projection—where the network is axially extended by as much as twofold or more—fluctuations in the axial direction are increased by almost twofold relative to motions in the unstressed network. The molecular basis for such strain softening is discussed broadly in terms of force-driven transitions. Specific considerations are given to 1) protein dissociations that reduce network connectivity, and 2) unfolding kinetics of a localized few of the red cell’s ~107 spectrin repeats

    Matrix elasticity in vitro controls muscle stem cell fate in vivo

    Get PDF
    Almost every laboratory that grows mammalian cells today grows their cells on tissue culture plastic, which was introduced to cell culture decades ago based on properties such as inertness, transparency, and so forth. However, plastic is rigid and unlike the many soft tissues in the body. Polymer gel systems that mimic the softness of various tissues have been developed over the past decade to test and understand the effects of rigidity on cells such as muscle cells. One recent study even shows that muscle stem cells expand much better in vitro on muscle-mimetic gels and that such cells prove optimal for engraftment in muscle

    Molecular Weight Dependence of Polymersome Membrane Elasticity and Stability

    Full text link
    Vesicles prepared in water from a series of diblock copolymers and termed "polymersomes" are physically characterized. With increasing molecular weight Mˉn\bar{M}_n, the hydrophobic core thickness dd for the self-assembled bilayers of polyethyleneoxide - polybutadiene (PEO-PBD) increases up to 20 nmnm - considerably greater than any previously studied lipid system. The mechanical responses of these membranes, specifically, the area elastic modulus KaK_a and maximal areal strain αc\alpha_c are measured by micromanipulation. As expected for interface-dominated elasticity, KaK_a (\simeq 100 pN/nmpN/nm) is found to be independent of Mˉn\bar{M}_n. Related mean-field ideas also predict a limiting value for αc\alpha_c which is universal and about 10-fold above that typical of lipids. Experiments indeed show αc\alpha_c generally increases with Mˉn\bar{M}_n, coming close to the theoretical limit before stress relaxation is opposed by what might be chain entanglements at the highest Mˉn\bar{M}_n. The results highlight the interfacial limits of self-assemblies at the nano-scale.Comment: 16 pages, 5 figures, and 1 tabl
    corecore