7 research outputs found
Hopf and zip bifurcation in a specific (n+1)-dimensional competitive system
In this work we study the occurrence of Andronov-Hopf and zip bifurcation in a concrete
(n + 1)-dimensional predator-prey system modelling the competition among n species of
predators for one species of prey. This is a generalization of results by Farkas (1984
not available
No presente trabalho estudaremos a ocorrência do fenômeno de bifurcação zip e de bifurcação de Andronov-Hopf, num modelo matemático dado por um sistema de equações diferenciais parciais que descreve a dinâmica entre n predadores competindo por uma presanot availabl
not available
Neste trabalho mostramos a ocorrência de bifurcação de Hopf em dois modelos epidemiológicos, que descrevem doenças micro e macro parasÃticas, cada um representado por um sistema de equações diferenciais ordinárias no plano. Além disso, estudamosa existência e unicidade de órbitas periódicas, via teoria de Liénard. Para finalizar, interpretamos os resultados obtidos, para descrever o comportamento da doençaWe show here the occurrence of Hopf bifurcation in two epidemiological models, describing micro and macro parasitical diseases, each model represented by a system of ordinary differential equations in the plane. Furthermore, we study theexistenceand unicity of periodic orbits, via liénard's theory. Finally, we interpret the results we obtained, to describe the behavior of the disease
Normal Hyperbolicity and Continuity of Global Attractors for a Nonlocal Evolution Equations
We show the normal hyperbolicity property for the equilibria of the evolution equation ( , )/ = − ( , ) + ( * ( , ) + ℎ), ℎ, ≥ 0, and using the normal hyperbolicity property we prove the continuity (upper semicontinuity and lower semicontinuity) of the global attractors of the flow generated by this equation, with respect to functional parameter
Normal Hyperbolicity and Continuity of Global Attractors for a Nonlocal Evolution Equations
We show the normal hyperbolicity property for the equilibria of the evolution equation ∂m(r,t)/∂t=-m(r,t)+g(βJ*m(r,t)+βh),  h,β≥0, and using the normal hyperbolicity property we prove the continuity (upper semicontinuity and lower semicontinuity) of the global attractors of the flow generated by this equation, with respect to functional parameter J