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Abstract
In this work we study the occurrence of Andronov-Hopf and zip bifurcation in a concrete
(n + 1)-dimensional predator-prey system modelling the competition among n species of
predators for one species of prey. This is a generalization of results by Farkas (1984).
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1 Introduction

The zip bifurcation phenomenon was introduced by Farkas [5] in 1984 for a
three dimensional prey-predator system. The model was not at structurally
stable although it illustrated the intuitively evident fact that at low values
of the carrying capacity K both predators might survive but as K grew only
one of them survives. Recently (see [1], [8]) the phenomenon was generalized
to a four dimensional ODE system.

The purpose of this paper is to study the occurrence of periodic orbits
generated by Andronov-Hopf bifurcation in an ODE system modelling the
competition among n species of predators for a single prey. Speci�cally, we
will consider the system


Ṡ = γ(1− S

K )S −
n∑

i=1

mifi(S)xi

ẋi =
(
mifi(S)− di

)
xi, i = 1, 2, ..., n,

(1)

where S denotes the quantity of prey, xi denotes the quantity of predator i and
fi(S) = S

ai+S is the functional response of predator i. All other parameters
in (1) are assumed to be non-negative and represent

• γ: intrinsic growth rate of prey

• K: carrying capacity of the environment

• mi: maximal birth rate of predator i
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• di: mortality of predator i

• ai: half saturation constant of predator i.

Also, we study in the same model the phenomenon of zip bifurcation.
In the next section we study the equilibrium points for the system and we

prove its dissipativeness. In Section 3 we establish the conditions under which
the Andronov-Hopf bifurcation occurs and �nally in Section 4 we determine
conditions for the occurrence of zip bifurcation in the model.

2 Equilibrium points

First we show that system (1) is dissipative before studying its equilibrium
points.

Proposición 2.1. Any solution of the system (1) with initial values S0 > 0,
x0

i > 0, i = 1, 2, ..., n is bounded in [0,∞].

We �rst observe that any solution of (1) whose initial value has positive
components remains with positive components, as long as the solution exists.
We will prove that the solution exists for all time t ≥ 0 and there exists a
bounded set J in Rn+1

+ which attracts the solutions starting on any bounded
set in Rn+1

+ . Let d0 = min{d1, ..., dn} and V (S, x1, ..., xn) = S+x1 + ...+xn.
If z(t) = (S(t), x1(t), ..., xn(t)) is a solution of (1), then as long as it exists,
we have

d

dt
V (z(t)) = γ(1− S(t)

K
)S(t)−

n∑
i=1

dixi(t).

Since S(1− S
K ) ≤ K

4 (1 + d0)2 − d0S for all S ∈ R, we have

d

dt
V (z(t)) ≤ −γd0S(t)−

n∑
i=1

dixi(t) +
K

4
(1 + d0)2.

Letting α = min{d0, γd0}, we have

d

dt
V (z(t)) ≤ −αV (z(t)) +

K

4
(1 + d0)2

and therefore

V (z(t)) ≤ V (z(0))e−αt +
K

4α
(1 + d0)2,

as long as the solution exists. If B is a bounded set contained in Rn+1
+ , then

there exists R > 0 such that V (z(0)) ≤ R. Let t0 = 1
α log K(1+d0)2

4αR and
z(0) ∈ B. For t ≥ t0, we have

V (z(t)) ≤ R
K(1 + d0)2

4αR
+
K

4α
(1 + d0)2 ≤

K(1 + d0)2

2α
.
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This implies that any solution is de�ned for t ≥ 0 and the compact set

J =

{
(S, x1, ..., xn) : S ≥ 0, x1 ≥ 0, ..., xn ≥ 0 and S + x1 + ... + xn ≤

K(1 + d0)2

2α

}
attracts all bounded set B. Therefore the system is dissipative and its global
attractor is contained in J .

Now, we discuss the equilibrium points of (1), that is the solutions of the
system

γ(1− S

K
)S −

n∑
i=1

mifi(S)xi = 0(
mifi(S)− di

)
xi = 0, i = 1, 2, ..., n.

(2)

For i = 1, ..., n, let λi = aidi
mi−di

the prey threshold quantity for species
i. Then, aside from the obvious solutions (S, x1, ..., xn) = (0, 0, ..., 0) and
(S, x1, ..., xn) = (K, 0, ...0), equation (2) has biologically interesting solutions
only if mi > di and λ1 = ... = λn. Henceforth we assume that mi > di and
λ1 = ... = λn = λ, i.e, the n species have equal prey threshold although they
achieve this by di�erent means.

With these notations and hypotheses, the system (1) can be written as Ṡ = γ(1− S
K )S −

n∑
i=1

mifi(S)xi

ẋi = βigi(S)xi,

(3)

where gi(S) = S−λ
ai+S , βi = mi − di and i = 1, 2, ..., n.

The equilibrium points of system (3) are the origin (S, x1, ..., xn) =
(0, 0, ..., 0), the point (S, x1, ..., xn) = (K, 0, ..., 0) and the points of (n − 1)-
dimensional hyperplane

H = {(S, x1, ..., xn) ∈ Rn+1 : S = λ,

m1
a1+λx1 + ...+ mn

an+λxn = γ(1− λ
K ), xi ≥ 0, i = 1, ..n}

(4)

To study the stability of these equilibrium points, observe that the Jaco-
bian matrix J (S , x1 , ..., xn) of the system (3) is

γ(1− 2S
k

)−
n∑

i=1

mif
′
i(S)xi m1f1(S) m2f2(S) . . . mn−1fn−1(S) mnfn(S)

g′1(S)x1 g1(S) 0 . . . 0 0

g′2(S)x2 0 g2(S) . . . 0 0

...
...

...
. . .

...
...

g′n−1(S)xn−1 0 0 . . . gn−1(S) 0

g′n(S)xn 0 0 . . . 0 gn(S)



.
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So, it is easy to see that (S, x1, ..., xn) = (0, 0, ..., 0) is unstable, with an n-
dimensional stable manifold and a one-dimensional unstable manifold. Now,
(S, x1, ..., xn) = (K, 0, ..., 0) is asymptotically stable if K < λ and unstable if
K > λ with a 1-dimensional stable manifold and an n-dimensional unstable
manifold. Note that if K < λ, then H is empty, and if K = λ then H = {0}.
It is known (see [10] and [3]) that

K > λ (5)

is a necessary condition for the survival of each predator. Therefore (5) will
also be assumed from now on. In the next section we �x our attention to the
study of stability of the equilibrium points belonging to H.

3 Occurrence of Andronov-Hopf and zip bifurcation

In this section, we study the stability of the points in H. The study will be
separated in two cases; one of them is when we consider a = a1 = a2 = ... =
an, that is, all predators have the same functional response and the other
case is a1 < a2 < ... < an, that is, the predators have di�erent functional
responses.

3.1 Andronov-Hopf bifurcation

In the following, we consider the case a = a1 = a2 = ... = an. Thus the
system (3) takes the form Ṡ = γ(1− S

K )S −
n∑

i=1

mixi

a+ S
S

ẋi = βi
S−λ
a+Sxi.

Since λ1 = ... = λn = λ, we have m1
d1

= ... = mn
dn

. Introducing the variable

ρi = di+1

di
= mi+1

mi
, i = 1, 2, ..., n− 1 we obtain

mi+1 = miρi, i = 1, 2, ..., n− 1. (6)

We also have ρi = βi+1

βi
. Hence, we can write


ρ1 = β2

β1
⇒ β2 = ρ1β1

ρ2 = β3

β2
⇒ β3 = ρ2β2 ⇒ β3 = ρ1ρ2β1

...

ρn−1 = βn

βn−1
⇒ βn = ρn−1βn−1 ⇒ βn = ρ1ρ2...ρn−1β1.

(7)
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Similarly, we get
m2 = m1ρ1

m3 = m2ρ2 ⇒ m3 = ρ1ρ2m1
...
mn = mn−1ρn−1 ⇒ mn = ρ1ρ2ρn−1m1.

(8)

Considering the expressions in (7) and (8), the system (3.1) can be written
in the form

Ṡ = γ(1− S
K )S − x1+ρ1x2+ρ1ρ2x3+ρ1ρ2...ρn−1xn

a+S m1S

ẋ1 = β1
S−λ
a+Sx1

ẋ2 = ρ1β1
S−λ
a+Sx2

ẋ3 = ρ1ρ2β1
S−λ
a+Sx3

...

ẋn = ρ1ρ2...ρn−1β1
S−λ
a+Sxn

(9)

Dividing the third equation in (9) by the second, the fourth by the third
and so on, up to dividing the n-th equation by the (n − 1)-th, we get the
following system 

dx2
dx1

= ρ1
x2
x1

dx3
dx2

= ρ2
x3
x2

...
dxn

dxn−1
= ρn−1

xn
xn−1

(10)

Integrating each equation in (10) we obtain easily the following �rst inte-
grals for the system

V1(S, x1, ..., xn) =
x2

xρ1
1

, V2(S, x1, ..., xn) =
x3

xρ2
2

, ..., Vn−1(S, x1, ..., xn) =
xn

x
ρn−1
n−1

.

Hence, for each �xed value of ci > 0, i = 1, 2, .., n− 1,

x2

xρ1
1

= c1 ,
x3

xρ2
2

= c2 , ...,
xn

x
ρn−1

n−1

= cn−1,

are invariant (n− 1)-dimensional manifolds in Rn with coordinates

(x1, x2, ..., xn).
Now, for any c = (c1, ..., cn−1) with ci > 0 for i = 1, ..., n − 1, the in-

tersection of these manifolds is a curve C in Rn, which is invariant for the
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S

n
R

M c

C

Figure 1: The manifolds Mc

system (9). A straightforward computation gives the parametric equations of
C, namely

x2 = c1x
ρ1
1

x3 = c2x
ρ2
2 ⇒ x3 = c2c

ρ2
1 x

ρ1ρ2
1

x4 = c3x
ρ3
3 ⇒ x4 = c3c

ρ3
2 c

ρ2ρ3
1 xρ1ρ2ρ3

1
...
xn = cn−1x

ρn−1
n−1 ⇒ xn = cn−1c

ρn−1
n−2 c

ρn−1ρn−2
n−3 ...c

ρn−1ρn−2...ρ2ρ1
1 x

ρ1ρ2...ρn−1
1 .

(11)

For any c = (c1, ..., cn−1) ∈ Rn−1
+ , we denote byMc the invariant manifold

Mc = {(S, x1, x2, ..., xn) ∈ Rn+1 : S ≥ 0 and x1, x2, ..., xn satisfy (11)}. (12)

Then, the family {Mc : c ∈ Rn−1
+ } is a two-dimensional foliation of the �rst

octant of Rn+1 and each leaf is the image of the embedding hc : R×R → Rn+1

given by
hc(S, x1) = (S, x1, x2(x1), ..., xn(x1)). (13)

For a �xed c = (c1, c2, ..., cn−1) with ci > 0, i = 1, 2, ..., n − 1, we study
the restriction of the system (9) to the manifold Mc, parametrized by S and
x1. Taking into account (11), this restriction is given by

Ṡ = γ(1− S
K )S +− (x1+ρ1c1x

ρ1
1 +ρ1ρ2c2c

ρ2
1 x

ρ1ρ2
1

a+S + ...+

ρ1ρ2...ρn−1cn−1c
ρn−1
n−2 ...c

ρ1ρ2...ρn−1
1 x

ρ1ρ2...ρn−1
1 )m1S

a+S

ẋ1 = β1
S−λ
a+Sx1

The introduction of the new parameters

η1 = ρ1; η2 = ρ1ρ2; ...; ηn−1 = ρ1ρ2...ρn−1

α1 = c1ρ1;α2 = c2c
ρ2
1 ρ1ρ2; ...;αn−1 = cn−1c

ρn−1

n−2 ...c
ρ2ρ3...ρn−1

1 ρ1ρ2ρn−1
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carries the previous system into
Ṡ = γ(1− S

K )S − x1+α1x
η1
1 +α2x

η2
1 +...+αn−1x

ηn−1
1

a+S m1S

ẋ1 = β1
S−λ
a+Sx1.

(14)

The equilibrium points of (14) are (S, x1) = (0, 0), (S, x1) = (K, 0) and
the single intersection point (S, x1) = (λ, ξ1) , where x1 = ξ1 is the unique
positive solution of the equation

x1 + ρ1c1x
ρ1
1 + ρ1ρ2c2c

ρ2
1 x

ρ1ρ2
1 + ...+

ρ1ρ2...ρn−1cn−1c
ρn−1

n−2 ...c
ρ1ρ2...ρn−1

1 x
ρ1ρ2...ρn−1

1 = γ(a+λ)(K−λ)
m1K ,

(15)

or, equivalently,

x1 + α1x
η1
1 + α2x

η2
1 + ... + αn−1x

ηn−1

1 = γ(a+λ)(K−λ)
m1K . (16)

Geometrically, the nontrivial equilibrium point of (14) is described as
follows: ξ1 is the second component of the point (λ, ξ1, ..., ξn) obtained as the
transversal intersection of the manifolds H and Mc. The other components
are given by

ξ2 = c1ξ
ρ1
1

ξ3 = c2c
ρ2
1 ξ

ρ1ρ2
1

ξ4 = c3c
ρ3
2 c

ρ2ρ3
1 ξρ1ρ2ρ3

1
...
ξn = cn−1c

ρn−1

n−2 c
ρn−1ρn−2

n−3 ...c
ρn−1ρn−2...ρ2ρ1...
1 ξ

ρ1ρ2...ρn−1

1 .

(17)

The Jacobian matrix of the system (14) is

J1 (S , x1 ) =

 γ(1− S
k )− γS

K +

x1+

n−1∑
i=1

αix
ηi

i

(a+S)2 m1a −
1+

n−1∑
i=1

αiηix
ηi−1
i

a+S m1S

a+λ
a+Sβ1x1

S−λ
a+S β1


Since

J1 (0 , 0 ) =

 γ 0

0 −β1λ
a

 and J1 (K , 0 ) =

 −γ −m1K
a+K .

0 (K−λ)β1

a+K

 ,

both (S, x1) = (0, 0) and (S, x1) = (K, 0) are saddle points if K > λ.
To study the stability of (S, x1) = (λ, ξ1), where ξ1 is the only positive

solution of (16), we will consider K as a bifurcation parameter. Next, we will
show that (14) undergoes an Andronov-Hopf bifurcation around (S, x1) =
(λ, ξ1). The following theorem concerns it.
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Teorema 3.1. If λ < K < a + 2λ, then the equilibrium (S, x1) = (λ, ξ1)
of system (14) is globally asymptotically stable inside the positive quadrant.
Moreover, for λ < K < a + 2λ, (14) does not have closed orbits inside the
positive quadrant . Finally, at K = a+2λ the system undergoes an Andronov-
Hopf Bifurcation, i.e. there is δ > 0 such that for K ∈ (a + 2λ, a + 2λ + δ),
the system (14) has an orbitally asymptotically stable limit cycle surrounding
(λ, ξ1).

First, we translate (λ, ξ1) to the origin by the change of coordinates

y1 = S − λy2 = x1 − ξ1, (18)

where ξ1 satis�es (16). System (14) becomes

ẏ1 = γ(y1 + λ)(1− y1+λ
K )S−

−y2+ξ1+α1(y2+ξ1)
η1+α2(y2+ξ1)

η2+...+αn−1(y2+ξ1)
ηn−1

a+y1+λ m1(y1 + λ)

ẏ2 = β1
y1

a+y1+λ (y2 + ξ1)

(19)

The Jacobian matrix of the previous system is

J2 (y1 , y2 ) =


∂f1(y1,y2)

∂y1

∂f1(y1,y2)
∂y2

∂f2(y1,y2)
∂y1

∂f2(y1,y2)
∂y2

 ,

where,

f1(y1, y2) = γ(y1 + λ)(1− y1−λ
K )S +

− y2+ξ1+α1(y2+ξ1)η1+α2(y2+ξ1)η2+...+αn−1(y2+ξ1)ηn−1

a+y1+λ m1(y1 + λ)

f2(y1, y2) = β1
y1

a+y1+λ(y2 + ξ1).
Since ξ1 satis�es (16), we obtain

J2 (0 , 0 ) =

 γλ(K−2λ−a)
K(a+λ)

(1+α1η1ξ
η1−1
1 +...+αn−1ηn−1ξηn−1

1 )λm1

a+λ

β1ξ1
a+λ 0

 .

Hence, the characteristic polynomial associate to J2(0, 0) is

P (µ) = µ2 + γλ(a+2λ−K)
K(a+λ) µ

+ βξ1(1+α1η1ξ
η1−1
1 +...+αn−1ηn−1ξηn−1

1 )λm1

(a+λ)2



Hopf and zip bifurcation in competitive systems 41

and its eigenvalues are

µ1,2(K) =
γλ(K−a−2λ)

K(a+λ)

2

±

√
(

γλ(K−a−2λ)
K(a+λ)

)2−4
(ξ1+α1η1ξ

η1
1 +...+αn−1ηn−1ξ

ηn
1 )β1λm1

(a+λ)2

2 .

Therefore, the origin (y1, y2) = (0, 0) is asymptotically stable if λ < K <
a+ 2λ and unstable when K > a+ 2λ.

To show that system (19), and consequently the system (14), does not
have closed orbits in the positive quadrant for λ < K < a + 2λ, we apply

Dulac's Criterion (see [4]). Consider the function h(S, x1) = xq
1(a+S)

S , where
q is a constant to be appropriately chosen. A straightforward computation
leads to(

∂f(S, x1)
∂S

+
∂g(S, x1)
∂x1

)
h(S, x1) =

γK − 2γS − γa+ β1K(q+1)(S−λ)
S

K
xq

1,

were f(S, x1) = γ(1− S
K )S − x1+α1x

η1
1 +α2x

η2
1 +...+αn−1x

ηn−1
1

a+S m1S and

g(y1, y2) = β1
S−λ
a+Sx1.

Taking q such that 2γλ = β1K(q + 1) we get(
∂f(S, x1)

∂S
+
∂g(S, x1)
∂x1

)
h(S, x1) =

K − a− 2λ− 2(S−λ)2

S

K
γxq

1.

Hence, for S > λ and K < a+2λ,
(

∂f(S,x1)
∂S + ∂g(S,x1)

∂

)
h(S, x1) < 0, so, by

Dulac's Criterion, the system (19) does not admit periodic orbits inside the
positive quadrant of R2. Thus, ifK < a+2λ, the equilibrium (S, x1) = (λ, ξ1)
will be globally asymptotically stable for solutions with initial conditions
inside the positive quadrant.

To complete the proof, we need to verify the hypotheses of Andronov -
Hopf's Theorem to show that at K = K0 = a + 2λ, the system (19), and
consequently the system (14), undergoes a Hopf bifurcation. First, we note
that at K = K0, we have µ1,2(K0) = ±iω0, where

ω0 =

[
(ξ1 + α1η1ξ

η1
1 + ...+ αn−1ηn−1ξ

ηn−1
1 )β1λm1

] 1
2

a+ λ
> 0. (20)

Therefore, there exists δ > 0 such that the eigenvalues µ1,2(K) are nonreal
and complex conjugate. Furthermore,

d

dK
Re µ(K0) =

γ

2(a+ 2λ)(a+ λ)
> 0. (21)
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In the following, we are going to compute the �rst Liapunov coe�cient
to determine the supercriticality of the periodic orbit generate by the Hopf
bifurcation. To do this, we shall use the technique given in [12] (see also [9]).

A straightforward computation shows that at K = K0 the eigenvectors of
J2(0, 0) associated to µ1,2(K0) are q1,2 = (±i∆, 1), where ∆ = ω0(a+λ)

β1ξ1
. The

eigenvectors of the transposed J2(0, 0)T associated to µ1(K0) is p1 = (− i
∆ , 1)

and the associated to µ2(K0) is p2 = ( i
∆ , 1).

Expanding the righthand side of system (19) in power series around
(y1, y2) = (0, 0) at K = K0 we are led to



ẏ1 = −

1+

n−1∑
i=1

αiηiξ
ηi−1
1

m1λ

a+λ
y2 − γλ

a+λ
y2
1 −

1+

n−1∑
i=1

αiηiξ
ηi−1
1

(a+λ)2
y1y2−

m1λ

n−1∑
i=1

αiηi(ηi − 1)ξ
ηi−1
1

(a+λ)3
y2
2 − γa

K
y3
1 +

a+(a+λ)

n−1∑
i=1

αiηiξ
ηi−1
1

(a+λ)3
y2
1y2 −

am1

n−1∑
i=1

αiηi(ηi − 1)ξ
ηi−1
1

2((a+λ)2)
y1y2

2 −
m1λ

n−1∑
i=1

αiηi(ηi − 1)(ηi − 2)ξ
ηi−2
1

6(a+λ)
y3
2 + O(|y|4)

ẏ2 = β1ξ1
a+λ

y1 − β1ξ1
(a+λ)2

y2
1 + β1

a+λ
y1y2 + β1ξ1

(a+λ)3
y3
1 −

β1
(a+λ)2

y2
1y2 + O(|y|4)

(22)

Denote the coe�cients of the vector �eld associated to ẏ1 by

a0 = 0, a1 = 0,

a2 = −

(
1 +

n−1∑
i=1

αiηiξ
ηi−1
1

)
m1λ

a+ λ
, a3 = − γλ

K(a+ λ)

a4 = −
m1a

(
1 +

n−1∑
i=1

αiηiξ
ηi−1
1

)
(a+ λ)2

, a5 = −
m1λ

n−1∑
i=1

αiηi(ηi − 1)ξηi−1
1

2(a+ λ)
,

a6 = − γa

K(a+ λ)2
, a7 =

1 +
n−1∑
i=1

αiηiξ
ηi−1
1

(a+ λ)3
,

a8 = −
am1

n−1∑
i=1

αiηi(ηi − 1)ξηi−1
1

2((a+ λ)2)
, a9 = −

m1λ
n−1∑
i=1

αiηi(ηi − 1)(ηi − 2)ξηi−2
1

6(a+ λ)

and the coe�cients of the vector �eld associated to ẏ2 by
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b0 = 0 b1 = β1ξ1
a+λ b2 = 0

b3 = − β1ξ1
(a+λ)2

b4 = β1

a+λ b5 = 0
b6 = β1ξ1

(a+λ)3
b7 = − β1

(a+λ)2
b8 = 0 b9 = 0.

Letting Y = (y1, y2) and F (Y, 0) = (F1(Y, 0), F2(Y, 0)), we can write the
system (22) as Ẏ = J3(0, 0)Y + F (Y, 0), where

F1(Y, 0) = a0 + a1y1 + a2y2 + a3y
2
1 + a4y1y2 + a5y

2
2 + a6y

3
1 + a7y

2
1y2

+ a8y1y
2
2 + a9y

3
2 +O(|Y |4),

F2(Y, 0) = b0 + b1y1 + b2y2 + b3y
2
1 + b4y1y2 + b5y

2
2 + b6y

3
1 + b7y

2
1y2

+ b8y1y
2
2 + b9y

3
2 +O(|Y |4),

or, equivalently,

F (Y, 0) =
1
2
B(Y, Y ) +

1
6
C(Y, Y, Y ) +O(|Y |4),

where

B(Y, Y ) = (2a3y
2
1 + 2a4y1y2 + 2a5y

2
2, 2b3y

2
1 + 2b4y1y2)

C(Y, Y, Y ) = (6a6y
3
1 + 6a7y

2
1y2 + 6a8y1y

2
2 + 6a9y

3
2, 6b1y

3
1 + 6b7y2

1y2)).

It is known (see, e.g. [12]) that the �rst Liapunov number l1(0) of (22) is
given by

l1(0) =
1

2ω0
Re(ig20g11 + ω0g21),

where g20 = 〈p,B(q, q)〉, g11 = 〈p,B(q, q̄)〉, g21 = 〈p, C(q, q, q̄)〉 and 〈·, ·〉
stands for the inner product in C.

A straightforward computation shows

• B(q, q) = (−2a3∆2 + 2i∆a4 + 2a5,−2∆2b3 + 2i∆b4)

• B(q, q̄) = (2a3∆2 + 2a5, 2∆2b3)

• C(q, q, q̄) = (6a6i∆3 + 2a7∆2 + 2a8i∆ + 6a9, 6b1i∆3 + 2b7i∆).

Consequently,

• g20(0) = ia3∆ + a4 − ia5
∆ − b3∆2 + ib4∆

• ig20(0) = −a3∆ + ia4 + a5
∆ − ib3∆2 − b4∆

• g11(0) = −ia3∆− ia5
∆ + b3∆2
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• ig20(0)g11(0) = ia2
3∆

2 + a3a4∆ − ia3a5 − a3b3∆3 + ia3b4∆2 + ia3a5 +
a4a5
∆ −a5b3∆− ia2

5
∆2 + ia5b4−a3b3∆3 + ia4b3∆2 +a5b3∆− ib23∆3−b3b4∆3

• ω0g21(0) = 3ω0a6∆2 − iω0a7∆ + ω0a8 − 3iω0a9 + 3iω0b1∆3 + ω0b7∆2

and, therefore,

l1(0) = 1
2ω2

0

(
a3a4∆− a3b3∆3 + a4a5

∆ − a5b3∆− a3b3∆3 + a5b3∆− b3b4∆3+

3ω0a6∆2 + ω0a8 + ω0b7∆2
)

= 1
2ω2

0

(
a3a4∆− 2a3b3∆3 + a4a5

∆ − b3b4∆3 + 3ω0a6∆2 + ω0a8 + ω0b7∆2
)

(23)

Taking into account the expressions for ai, bi, and ∆ (i = 1, 2, ..., 9), we
have

−2∆3a3b3 = −2ω0(a+λ)3

β3
1ξ3

1

γλ
K(a+λ)

β1ξ1
(a+λ)2

= −2 ω3
0γλ

Kβ2
1ξ2

1

and
ω0b7∆2 − b3b4∆3 = −ω3

0(a+λ)2

β2
1ξ2

1

β1

(a+λ)2
+ ω3

0(a+λ)3

β3
1ξ3

1

β1

a+λ
β1ξ1

(a+λ)2
= 0.

From (20), we have

ω2
0(a+ λ)2

β1
= m1λ(ξ1 + α1η1ξ

η1
1 + ...+ αn−1ηn−1ξ

ηn
1 )

and this leads to

a4a5
∆ = β1

ω0(a+λ)

m1a

(
ξ1+

n−1∑
i=1

αiηiξ
ηi
1

)
(a+λ)2

m1λ

n−1∑
i=1

αiηi(ηi − 1)ξηi−1
1

2(a+λ)

= m1aω0
2(a+λ)2

n−1∑
i=1

αiηi(ηi − 1)ξηi−1
1

and therefore a4a5
∆ + ω0a8 = 0. Furthermore,

∆a3a4 = ω0γa
Kβξ1(a+λ)2

(
1 +

n−1∑
i=1

αiηiξ
ηi−1
1

)
m1λ

= ω0γa
Kβ1ξ2

1(a+λ)2

(
ξ1 +

n−1∑
i=1

αiηiξ
ηi
1

)
m1λ

= ω0γa
Kβ1ξ2

1(a+λ)2
ω2

0((a+λ)2)
Kβ1

= ω3
0γa

Kβ2
1ξ2

1
.

From the previous equation, ∆a3a4 + 3ω0∆2a6 = −2 ω3
0γa

Kβ2
1ξ2

1
. Thus

l1(0) = −2
ω0γa

Kβ2
1ξ

2
1

< 0.

Hence, the system (19), and consequently the system (14), undergoes
a supercritical Hopf bifurcation and the orbit generated by the bifurcation
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exists for a + 2λ < K < a + 2λ + δ (δ > 0) and is orbitally asymptotically
stable. The proof is complete.

3.2 Zip bifurcation

In the following, we are going to consider the case a1 < a2 < ... < an.
These conditions and λ1 = λ2 = ... = λn imply that b1 < ... < bn. In
fact, a1d1

m1−d1
= ... = andn

mn−dn
⇒ a1

b1−1 = ... = an
bn−1 ⇒ ai

ai+1
= bi−1

bi+1−1 < 1,
i = 1, 2, ..., n− 1, and therefore bi < bi+1, i = 1, 2, ..., n− 1.

Denote by J = J(S, x1, ..., xn) the Jacobian matrix of the system (3) and

j = γ(1− S
K )− γS

K −
n∑

i=1

miai

(ai + S)2
xi, so

J =



j − m1S
a1+S − m2S

a2+S . . . − mn−1S
an−1+S − mnS

an+S
β1(a1+λ)
(a1+S)2

x1
β1(S−λ)

a1+λ 0 . . . 0 0
β2(a2+λ)
(a2+S)2

x2 0 β2(S−λ)
a2+λ . . . 0 0

...
...

...
. . .

...
...

βn−1(an−1+λ)
(an−1+S)2

xn−1 0 0 . . . βn−1(S−λ)
an−1+λ 0

βn(an+λ)
(an+S)2

xn 0 0 . . . 0 βn(S−λ)
an+λ


Computing J(λ, ξ1, ..., ξn) at a point (λ, ξ1, ..., ξn) ∈ H, we get

J =



−γλ
K + λ

n∑
i=1

mi

(ai + λ)2
ξi − m1λ

a1+λ − m2λ
a2+λ . . . − mn−1λ

an−1+λ − mnλ
an+λ

β1ξ1
a1+λ 0 0 . . . 0 0
β2ξ2
a2+λ 0 0 . . . 0 0
...

...
...

. . .
...

...
βn−1ξn−1

an−1+λ 0 0 . . . 0 0
βnξn

an+λ 0 0 . . . 0 0


since γ(1− λ

K )−
n∑

i=1

mia1

(ai + λ)2
ξi =

n∑
i=1

mia1

ai + λ
ξi−

n∑
i=1

mia1

(ai + λ)2
ξi = λ

n∑
i=1

mi

(ai + λ)2
ξi,

according to (4).
The characteristic polynomial of J(λ, ξ1, ..., ξn) is given by

P (µ) = µn−1

[
µ2 + µ

(
λγ

K
− λ

n∑
i=1

mi

(ai + λ)2
ξi

)
+ λ

n∑
i=1

miβi

(ai + λ)2
ξi

]
. (24)

In fact, we have

det(µ−J) =

(
µ−λ

n∑
i=1

mi

(ai + λ)2
ξi +

λγ

K

)
µn +

m1λ

a1 + λ
∆12 +

m2λ

a2 + λ
∆13 + ...+

mnλ

an + λ
∆1n (25)
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where ∆1j = (−1)j+1 det(µ−J)1j and det(µ−J)1j is the determinant of the
submatrix (µ− J)1j gotten from µ− J eliminating the line 1 and the column
j, j = 2, 3, ..., n+ 1, i.e

∆1j = (−1)j+1



col(j − 1) col(j + 1)

− β1ξ1
a1+λ

µ 0 0 . . . 0 0 . . . 0 0

− β2ξ2
a2+λ

0 µ 0 . . . 0 0 . . . 0 0

− β3ξ3
a3+λ

0 0 µ . . . 0 0 . . . 0 0

...
...

...
...

...
...

... . . .
...

...

−βn−1ξn−1
an−1+λ

0 0 0 . . . 0 0 . . . µ 0

− βnξn
an+λ

0 0 0 . . . 0 0 . . . 0 µ



So ∆12 = (−1)3
[
(−1)2

(
− β1ξ1

a1+λ

)
µn−2

]
= β1ξ1

a1+λµ
n−1; ∆13 = β2ξ2

a2+λµ
n−1;

∆14 = β3ξ3
a3+λµ

n−1 . . . ∆1n = βnξn

an+λµ
n−1.

Thus, the characteristic polynomial of J(λ, ξ1, ..., ξn) is given as in (24).
This means that each equilibrium point in H has 0 as an eigenvalue with
multiplicity n−2 and two eigenvalues with negative real part if the polynomial
between brackets in (24) is stable (respectively, positive real part if the same
polynomial is unstable). Observe that if λ < K < a1 + 2λ, we have

n∑
i=1

mi

(ai + λ)2
ξi ≤

1
a1 + λ

γ(1− λ

K
) <

1
a1 + λ

(1− λ

a1 + 2λ
) <

γ

K
,

since ai + 2λ < ai+1 + 2λ, i = 1, 2, ..., n. Similarly, if K > an + 2λ, then

n∑
i=1

mi

(ai + λ)2
ξi >

γ

k
.

Therefore the polynomial between brackets in (24) is stable if

λ < K < a1 + 2λ since
n∑

i=1

mi

(ai + λ)2
ξi <

γ

k
(26)

and unstable if

K > an + 2λ since
n∑

i=1

mi

(ai + λ)2
ξi >

γ

k
. (27)

Consider the following hyperplane

H1 = {(λ, ξ1, ..., ξn) ∈ Rn+1 :
n∑

i=1

mi

(ai + λ)2
ξi =

γ

k
} (28)

With the previous comments we can state the following theorem
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Figure 2: Hyperplane's Intersections

Teorema 3.2. Let us assume that 0 < λ < K, γ, βi, mi, ai are positive and
a1 < a2 < ... < an. If the carrying capacity K of the environment satis�es
K < a1 + 2λ, then all equilibrium points in H are Liapunov stable, in the
sense that there is a neighborhood of H such that all the solutions in this
neighborhood are attracted by H; if K > an + 2λ, then the equilibrium points
are unstable. Furthermore, if K is increased from one extreme to the other
one of the interval

(
a1 + 2λ, an + 2λ

)
then the hyperplane intersection of H

and H1 is traveling through H from the vertex on the axis xn to the vertex x1

and the equilibria left behind get destabilized; For a1 +2λ < K < an +2λ this
hyperplane intersection divides H in two parts, "the upper one" is a repellor
and "the lower one" is an attractor of the system, i.e, the system undergoes
a zip bifurcation.
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If λ < K < a1 + 2λ, then the linearization of (3) around each equilibrium
(λ, ξ1, ..., ξn) ∈ H has zero as an eigenvalue of multiplicity n−1 and two eigen-
values with negative real part, according to (26). It implies, by the Theorem
of the Invariant Manifolds (see [1] Theorem A.3.1), that through each equilib-
rium point (λ, ξ1, ..., ξn) ∈ H pass one (n− 1)−dimensional smooth invariant
manifold. Further, all the orbits on this manifold tends to (λ, ξ1, ..., ξn) when
t → +∞. On the other hand, if K > an + 2λ, the equilibrium (λ, ξ1, ..., ξn)
are unstable in accordance with (27).

Let us study the more interesting case when K changes from a1 + 2λ to
an + 2λ. We will show that when K grows from a1 + 2λ up to an + 2λ, the
(n − 1)-dimensional hyperplane in Rn+1 given in (28) intersect H, and the
properties of stability of the equilibrium points in H changes. We will denote
the intercepts coordinates of H with the coordinate axes by (x1

H , 0, 0, ..., 0),
(0, x2

H , 0, ..., 0), ..., (0, 0, 0, ..., xn
H) and ofH1 by (x1

H1
, 0, 0, ..., 0), (0, x2

H1
, 0, ..., 0), ... ,

(0, 0, 0, ..., xn
H1

). Observe that xi
H = γ(ai+λ)(K−λ)

miK
is an increasing function of K;

on the other hand, xi
H1

= γ(ai+λ)2

miK
is a decreasing function of K; furthermore,

as the function K(a) = a + 2λ is increasing in the interval a ∈ [0, an + 2λ)
we have λ < K1 < K2 < ... < Kn. A simple calculation shows that if
λ < K < Ki then xi

H < xi
H1

and xi
H = xi

H1
at K = Ki for i = 1, 2, ..., n.

Hence, for λ < K < K1 the hyperplane H is below H1 and reach H1 at
K = K1.

In this case, inequality (26) is valid for all points in H implying that all
his points are stable (when we change K in the interval λ < K < K1 the
hyperplane H and H1 are dislocated parallel). When K is increased beyond
K1, the hyperplane H cuts into H1 and reach x2

H = x2
H1

at K = K2, reach
x3

H = x3
H1

at K = K3 and so on up to reach xn
H = xn

H1
at K = Kn. For

K > Kn, the hyperplane H1 cuts the hyperplane H outside the positive
octant so that now H1 will be below H (see Figure 2). In the process in
that part of H which is already above the hyperplane H1 the condition (27)
holds. This mean that the equilibrium on this part of the hyperplane have
a (n − 1)− dimensional unstable manifold which �ll a neighborhood of this
part of H. The proof is complete.
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