4 research outputs found

    Emergent superconductivity in low dimensions

    No full text
    Low-dimensional systems provide the opportunity to explore the relationship between electronic correlations, dimensionality, inhomogeneities, and superconductivity. In this work, single crystals of the quasi-one-dimensional Na2_0Mo6Se6 are studied, composed of MoSe filaments weakly coupled by Na atoms and subject to intrinsic disorder (6 > 0). Naz_0Mo6Se6 is demonstrated to display strong electronic correlations in its normal state, whereas a superconducting ground state emerges from Anderson localized electrons. Two novel behaviors of the superconducting state are observed: first , a disorderinduced enhancement of the superconducting transition temperature; second, a reentrant phase coherence with increasing temperature, magnetic field , and current. The intrinsic properties of Na2_0Mo6Se6 are analyzed to offer a thorough understanding of these phenomena. The emergence of superconductivity in such low-dimensional systems provides a fruitful playground to explore electronic order and correlations.​Doctor of Philosophy (SPMS

    A systematic review of cardiac time intervals utilising non-invasive fetal electrocardiogram in normal fetuses

    Get PDF
    Abstract Background Non-invasive fetal electrocardiogram (NIFECG) is an evolving technology in fetal surveillance which is attracting increasing research interest. There is however, only limited data outlining the reference ranges for normal cardiac time intervals (CTIs). The objective of our group was to carry out a systematic review to outline normal fetal CTIs using NIFECG. Methods A systematic review of peer reviewed literature was performed, searching PUBMED,Ovid MEDLINE and EMBASE. The outcomes of interest included fetal CTIs (P wave duration, PR interval, QRS duration and QT interval) and a descriptive summary of relevant studies as well. The outcomes were grouped as early pre-term (≤ 32 weeks), moderate to late pre-term (32–37 weeks) and term (37–41 weeks). Results 8 studies were identified as suitable for inclusion. Reference ranges of CTIs were generated. Both PR interval and QRS duration demonstrated a linear correlation with advancing gestation. Several studies also demonstrated a reduction in signal acquisition between 27 and 32 weeks due to the attenuation by vernix caseosa. In this group, both the P wave and T waves were difficult to detect due to signal strength and interference. Conclusion NIFECG demonstrates utility to quantify CTIs in the fetus, particularly at advanced gestations. Larger prospective studies should be directed towards establishing reliable CTIs across various gestations

    Reentrant Phase Coherence in Superconducting Nanowire Composites

    No full text
    International audienceThe short coherence lengths characteristic of low-dimensional superconductors are associated with usefully high critical fields or temperatures. Unfortunately, such materials are often sensitive to disorder and suffer from phase fluctuations in the superconducting order parameter which diverge with temperature T, magnetic field H, or current I. We propose an approach to overcome synthesis and fluctuation problems: building superconductors from inhomogeneous composites of nanofilaments. Macroscopic crystals of quasi-one-dimensional Na2-δMo6Se6 featuring Na vacancy disorder (δ ≈ 0.2) are shown to behave as percolative networks of superconducting nanowires. Long-range order is established via transverse coupling between individual one-dimensional filaments, yet phase coherence remains unstable to fluctuations and localization in the zero (T,H,I) limit. However, a region of reentrant phase coherence develops upon raising (T,H,I). We attribute this phenomenon to an enhancement of the transverse coupling due to electron delocalization. Our observations of reentrant phase coherence coincide with a peak in the Josephson energy EJ at nonzero (T,H,I), which we estimate using a simple analytical model for a disordered anisotropic superconductor. Na2-δMo6Se6 is therefore a blueprint for a future generation of nanofilamentary superconductors with inbuilt resilience to phase fluctuations at elevated (T,H,I
    corecore