155 research outputs found

    Transporter oligomerization : form and function

    Get PDF
    Transporters are integral membrane proteins with central roles in the efficient movement of molecules across biological membranes. Many transporters exist as oligomers in the membrane. Depending on the individual transport protein, oligomerization can have roles in membrane trafficking, function, regulation and turnover. For example, our recent studies on UapA, a nucleobase ascorbate transporter, from Aspergillus nidulans, have revealed both that dimerization of this protein is essential for correct trafficking to the membrane and the structural basis of how one UapA protomer can affect the function of the closely associated adjacent protomer. Here, we review the roles of oligomerization in many particularly well-studied transporters and transporter families

    Mutational analysis of the major proline transporter (PrnB) of Aspergillus nidulans

    Get PDF
    PrnB, the L-proline transporter of Aspergillus nidulans, belongs to the Amino acid Polyamine Organocation (APC) transporter family conserved in prokaryotes and eukaryotes. In silico analysis and limited biochemical evidence suggest that APC transporters comprise 12 transmembrane segments (TMS) connected with relatively short hydrophilic loops (L). However, very little is known on the structure-function relationships in APC transporters. This work makes use of the A. nidulans PrnB transporter to address structure-function relationships by selecting, constructing and analysing several prnB mutations. In the sample, most isolated missense mutations affecting PrnB function map in the borders of cytoplasmic loops with transmembrane domains. These are I119N and G120W in L2-TMS3, F278V in L6-TMS7, NRT378NRTNRT and PY382PYPY in L8-TMS9 and T456N in L10-TMS11. A single mutation (G403E) causing, however, a very weak phenotype, maps in the borders of an extracellular loop (L9-TMS10). An important role of helix TMS6 for proline binding and transport is supported by mutations K245L and, especially, F248L that clearly affect PrnB uptake kinetics. The critical role of these residues in proline binding and transport is further shown by constructing and analysing isogenic strains expressing selected prnB alleles fused to the gene encoding the Green Fluorescent Protein (GFP). It is shown that, while some prnB mutations affect proper translocation of PrnB in the membrane, at least two mutants, K245E and F248L, exhibit physiological cellular expression of PrnB and, thus, the corresponding mutations can be classified as mutations directly affecting proline binding and/or transport. Finally, comparison of these results with analogous studies strengthens conclusions concerning amino acid residues critical for function in APC transporters

    Pentamidine Is Not a Permeant but a Nanomolar Inhibitor of the Trypanosoma brucei Aquaglyceroporin-2

    Get PDF
    The chemotherapeutic arsenal against human African trypanosomiasis, sleeping sickness, is limited and can cause severe, often fatal, side effects. One of the classic and most widely used drugs is pentamidine, an aromatic diamidine compound introduced in the 1940s. Recently, a genome-wide loss-of-function screen and a subsequently generated trypanosome knockout strain revealed a specific aquaglyceroporin, TbAQP2, to be required for high-affinity uptake of pentamidine. Yet, the underlying mechanism remained unclear. Here, we show that TbAQP2 is not a direct transporter for the di-basic, positively charged pentamidine. Even though one of the two common cation filters of aquaglyceroporins, i.e. the aromatic/arginine selectivity filter, is unconventional in TbAQP2, positively charged compounds are still excluded from passing the channel. We found, instead, that the unique selectivity filter layout renders pentamidine a nanomolar inhibitor of TbAQP2 glycerol permeability. Full, non-covalent inhibition of an aqua(glycero)porin in the nanomolar range has not been achieved before. The remarkable affinity derives from an electrostatic interaction with Asp265 and shielding from water as shown by structure-function evaluation and point mutation of Asp265. Exchange of the preceding Leu264 to arginine abolished pentamidine-binding and parasites expressing this mutant were pentamidine-resistant. Our results indicate that TbAQP2 is a high-affinity receptor for pentamidine. Taken together with localization of TbAQP2 in the flagellar pocket of bloodstream trypanosomes, we propose that pentamidine uptake is by endocytosis

    Systematic Mutational Analysis of the Intracellular Regions of Yeast Gap1 Permease

    Get PDF
    The yeast general amino acid permease Gap1 is a convenient model for studying the intracellular trafficking of membrane proteins. Present at the plasma membrane when the nitrogen source is poor, it undergoes ubiquitin-dependent endocytosis and degradation upon addition of a good nitrogen source, e.g. ammonium. It comprises 12 transmembrane domains (TM) flanked by cytosol-facing N- and C-terminal tails (NT, CT). The NT of Gap1 contains the acceptor lysines for ubiquitylation and its CT includes a sequence essential to exit from the endoplasmic reticulum (ER).Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Transceptors as a functional link of transporters and receptors

    No full text
    Cells need to communicate with their environment in order to obtain nutrients, grow, divide and respond to signals related to adaptation in changing physiological conditions or stress. A very basic question in biology is how cells, especially of those organisms living in rapidly changing habitats, sense their environment. Apparently, this question is of particular importance to all free-living microorganisms. The critical role of receptors, transporters and channels, transmembrane proteins located in the plasma membrane of all types of cells, in signaling environmental changes is well established. A relative newcomer in environment sensing are the so called transceptors, membrane proteins that possess both solute transport and receptor-like signaling activities. Now, the transceptor concept is further enlarged to include micronutrient sensing via the iron and zinc high-affinity transporters of Saccharomyces cerevisiae. Interestingly, what seems to underline the transport and/or sensing function of receptors, transporters and transceptors is ligand-induced conformational alterations recognized by downstream intracellular effectors. © 2017 Diallinas
    corecore