242 research outputs found

    Preliminary engineering assessment of alternative magnetic divertor configurations for EU-DEMO

    Get PDF
    One of the main challenges in the roadmap to the realization of fusion energy is to develop a heat and power exhaust system able to withstand the large loads expected in the divertor of a fusion power plant. The challenge of reducing the heat load on the divertor targets is addressed, within the mission 2 \u2018Heat-exhaust systems\u2019, through the investigation of divertor configurations alternative to the standard Single Null (SN), such as the Snowflake (SF), Double Null (DN), X and Super-X (SX) divertors. This paper focuses on a preliminary engineering assessment of the alternative configurations proposed for the EU DEMO reactor. Starting from the description of the optimized plasma shape developed for each configuration, the 3D geometrical description of the Magnet System and of the main Mechanical Structures (Vacuum Vessel and in-vessel components) is presented. Based on the 3D geometry, the compatibility of the location and dimensions of ports with Remote Maintenance needs is discussed and possible design optimizations are proposed both for the Magnets system and the mechanical structures design. Finally, the various configurations are compared with regard to the engineering and feasibility aspects

    Biomechanical analysis of the upper body during overhead industrial tasks using electromyography and motion capture integrated with digital human models

    Get PDF
    In this paper, we present a biomechanical analysis of the upper body, which includes upper-limb, neck and trunk, during the execution of overhead industrial tasks. The analysis is based on multiple performance metrics obtained from a biomechanical analysis of the worker during the execution of a specific task, i.e. an overhead drilling task, performed at different working heights. The analysis enables a full description of human movement and internal load state during the execution of the task, thought the evaluation of joint angles, joint torques and muscle activations. A digital human model is used to simulate and replicate the worker’s task in a virtual environment. The experiments were conduced in laboratory setting, where four subjects, with different anthropometric characteristics, have performed 48 drilling tasks in two different working heights defined as low configuration and middle configuration. The results of analysis have impact on providing the best configuration of the worker within the industrial workplace and/or providing guidelines for developing assistance devices which can reduce the physical overloading acting on the worker’s body

    Systems engineering approach for pre-conceptual design of DEMO divertor cassette

    Get PDF
    Abstract This paper presents the pre-conceptual design activities conducted for the European DEMO divertor, focusing on cassette design and Plasma Facing Components (PFC) integration. Following the systems engineering principles, a systematic design method, the Iterative and Participative Axiomatic Design Process (IPADeP), has been adopted. Basing on Axiomatic Design, IPADeP supports the early conceptual design of complex systems. The work moved from the geometrical and interface constraints imposed by the 2015 DEMO configuration model. Then, since different materials will be used for cassette and PFCs, the divertor geometry has been developed taking into account the cooling parameters of the cassette Eurofer steel and the integration of PFCs cooling system. Accordingly, the design process led to a double wall cassette structure with internal reinforcing ribs to withstand cassette coolant pressure and three different kinds of piping schemes for PFCs with dual circuits. These three solutions differs in the feeding pipes layouts and target manifold protection and they have been proposed and evaluated considering heat flux issues, shielding problems, interface requirements with blanket and vacuum vessel and remote maintenance needs. A cassette parametric shell model has been used to perform first structural analyses of the cassette body against coolant pressure. Taking advantages of the parametric surface modelling and its linkage with Finite Element (FE) code, the cassette ribs layout and thickness has been evaluated and optimized, considering at the same time the structural strength needed to withstand the coolant parameters and the maximum stiffness required for cassette preloading and locking needs

    Development of site-specific biomechanical indices for estimating injury risk in cycling

    Get PDF
    In this paper we present novel biomechanical indices for site-specific assessment of injury risk in cycling. The indices are built from a multifactorial analysis based on the kinematics and kinetics of the cyclist from the biomechanical side, and muscle excitations and muscle synergies from the neurophysiological side. The indices are specifics for three body regions (back, knee, ankle) which are strongly affected by overuse injuries in cycling. We use these indices for injury risks analysis of a recreational cyclist, who offered to participate in the experiments. The preliminary results are promising towards the use of such indices for planning and/or evaluating training schedule with the final goal of reducing non-traumatic injuries in cycling

    EU-DEMO divertor: Cassette design and PFCs integration at pre-conceptual stage

    Get PDF
    The pre-conceptual design of the DEMO divertor cassette with a novelty, alternative path of the main cooling pipes inside cassette body is presented in this paper, focusing on cassette design and Plasma Facing Components (PFC) integration. The divertor cassette design is reviewed, considering recent updates in the DEMO configuration model as presented by the Programme Management Unit (PMU) in 2018. The new configuration requires the cooling pipes to be integrated inside the cassette body. The components affected by these changes and the impact on the divertor design are analyzed. The study focuses on a new integration system between cassette and cooling pipes. The paper describes the integration on the new cassette geometry and the divertor sub-systems. The design activities related to this system are discussed in detail in terms of CAD modeling and considerations with respect to manufacturing such as welding technologies and non-destructive testing

    A Digital Pattern Methodology supporting Railway Industries in Portfolio Management

    Get PDF
    The object of this paper is the development of a decision support system involved in the bidding for invitations to tender in the railway field. The proposed methodology is based on the characterization of the whole train and its components, through several attributes according to a digital pattern approach. In particular some key components were chosen such as the traction motor, the bogie and the auxiliary equipment converter. The system measures the extent to which the products offered by the company fit the one required by the customer, comparing the homologous attributes. Such analysis is called ‘adopt/adapt/innovate’ (AAI). In this way it is possible to identify products already designed that fully or partly fit what required, obtaining huge benefits in terms of effectiveness and efficiency

    A preliminary approach for swimming performance analysis of FISDIR elite athletes with intellectual impairment using an inertial sensor

    Get PDF
    People with intellectual impairment show low performances in motor control, especially in complex movements. Performance analysis methods, based on wearable inertial sensor, are often used in typical developed swimmers but have never been used in swimmers with intellectual impairment, for whom the use of quantitative systems would be even more important. This paper presents a case study conducted on freestyle swimmers from the functional evaluation project of the Italian Sport Federation for athletes with Intellectual Impairment (FISDIR). The tests were conducted by five Italian elite swimmers with intellectual impairment using a structured experimental protocol which foresees an inertial sensor located on the wrist. Key freestyle temporal and kinematic parameters were assessed. A high-speed camera was used as a benchmark to validate the inertial-based parameters. The preliminary results indicate that the proposed inertial-based approach correlates over 90% with the performance indices obtained with the camera-based approach, and therefore it could represent a useful tool for monitoring and improving the training

    Insulated fixation system of plasma facing components to the divertor cassette in Eurofusion-DEMO

    Get PDF
    The design activities of an insulated Plasma Facing Components-Cassette Body (PFCs-CB) support has been carried out under the pre-conceptual design phase for Eurofusion-DEMO Work Package DIV-1 \u201cDivertor Cassette Design and Integration\u201d - Eurofusion Power Plant Physics & Technology (PPPT) program. The Eurofusion-DEMO divertor is a key in-vessel component with PFCs which directly interact with the plasma scrape-off layer. The PFCs have to cope with high heat loads, neutron irradiation and electromagnetic loads. The mechanical integrity of the PFCs and water cooling pipes can be jeopardized by high heat loads and by electromagnetic loads generated in a disruption event. In European-DEMO the possibility to estimate the heat load by measuring the relative thermocurrents is under investigation. In order to allow thermocurrents measurements, a divertor design option provides that PFCs are electrically insulated from CB. In this work authors aim to analyze the opportunity that the PFC-CB fixing system incorporates an electrical insulation system, thus acquiring also an important diagnostic role in the measurement of the thermocurrents and in the management of the current flows. The possible use of ceramic material (e.g. alumina) as the insulating layer between the support components is investigated
    • …
    corecore