73 research outputs found

    Doped GeSe materials for selector applications

    Get PDF
    We report on the thermal and electrical performance of nitrogen (N) and carbon (C) doped GeSe thin films for selector applications. Doping of GeSe successfully improved its thermal stability to 450 degrees C. N doping led to a decrease in the off-state leakage and an increase in threshold voltage (V-th), while C doping led to an increase in leakage and reduced V-th. Hence, we show an effective method to tune the electrical parameters of GeSe selectors by using N and C as dopants

    Prospecting environmental mycobacteria: combined molecular approaches reveal unprecedented diversity

    Get PDF
    Background: Environmental mycobacteria (EM) include species commonly found in various terrestrial and aquatic environments, encompassing animal and human pathogens in addition to saprophytes. Approximately 150 EM species can be separated into fast and slow growers based on sequence and copy number differences of their 16S rRNA genes. Cultivation methods are not appropriate for diversity studies; few studies have investigated EM diversity in soil despite their importance as potential reservoirs of pathogens and their hypothesized role in masking or blocking M. bovis BCG vaccine. Methods: We report here the development, optimization and validation of molecular assays targeting the 16S rRNA gene to assess diversity and prevalence of fast and slow growing EM in representative soils from semi tropical and temperate areas. New primer sets were designed also to target uniquely slow growing mycobacteria and used with PCR-DGGE, tag-encoded Titanium amplicon pyrosequencing and quantitative PCR. Results: PCR-DGGE and pyrosequencing provided a consensus of EM diversity; for example, a high abundance of pyrosequencing reads and DGGE bands corresponded to M. moriokaense, M. colombiense and M. riyadhense. As expected pyrosequencing provided more comprehensive information; additional prevalent species included M. chlorophenolicum, M. neglectum, M. gordonae, M. aemonae. Prevalence of the total Mycobacterium genus in the soil samples ranged from 2.3×107 to 2.7×108 gene targets g−1; slow growers prevalence from 2.9×105 to 1.2×107 cells g−1. Conclusions: This combined molecular approach enabled an unprecedented qualitative and quantitative assessment of EM across soil samples. Good concordance was found between methods and the bioinformatics analysis was validated by random resampling. Sequences from most pathogenic groups associated with slow growth were identified in extenso in all soils tested with a specific assay, allowing to unmask them from the Mycobacterium whole genus, in which, as minority members, they would have remained undetected

    Ternary silicide formation from Ni-Pt, Ni-Pd and Pt-Pd alloys on Si(100): nucleation and solid solubility of the monosilicides

    No full text
    © 2017 Acta Materialia Inc. The solid solubility of the isomorphous monosilicides during the silicide reaction of Ni-Pt, Ni-Pd and Pt-Pd alloys on Si(100) is comparatively studied in the full composition range. Our study reveals that PtSi and PdSi, exhibiting a minor lattice mismatch, directly form a solid solution. In contrast, for larger differences in lattice parameters such as is the case for NiSi-PtSi and NiSi-PdSi, the mutually soluble phases coexist, prior to the formation of a solid solution at increased temperatures. Hence, it appears that the direct formation of a ternary monosilicide solid solution is inherently related to the lattice mismatch of the binary monosilicides. This finding provides an explanation for important differences observed in the elemental redistribution between the three systems, considered to be very similar up to now. Moreover, the different formation of a solid solution results in a fundamentally different nucleation of PdSi: while Ni lowers the nucleation barrier by reducing the contribution of the interface energy, Pt strongly increases the entropy of mixing which triggers the formation of the Pd-monosilicide at surprisingly low temperatures. Our results show that the lattice mismatch is a crucial parameter and determines the phase formation sequence and elemental redistribution during the silicide reaction.publisher: Elsevier articletitle: Ternary silicide formation from Ni-Pt, Ni-Pd and Pt-Pd alloys on Si(100): Nucleation and solid solubility of the monosilicides journaltitle: Acta Materialia articlelink: http://dx.doi.org/10.1016/j.actamat.2017.03.022 content_type: article copyright: © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.status: publishe
    • …
    corecore