260 research outputs found

    Essential constraints for detecting deep sources in EEG - application to orthostatic tremor

    Get PDF
    The hypotheses that orthostatic tremor is generated by a central oscillator is been tested in this paper. In order to understand the mechanisms of the central network its sources need to be found. The cortical sources of both the basic and first “harmonic” frequency of orthostatic tremor are addressed in this paper. The Dynamic Imaging of Coherent Sources (DICS) was used to find the coherent sources in the brain. The three essential constraints for detecting deep sources in the brain using EEG data were tested by three model simulations. The optimal number of electrodes, length of the data and the signal to noise ratio required for error-free localization was tested. In all the orthostatic tremor patients the corticomuscular coherence was also present in the basic and the first harmonic frequency of the tremor. The basic frequency constituted a network of primary leg area, supplementary motor area, primary motor cortex, two pre-motor sources, diencephalon and cerebellum. The first harmonic frequency was in the region of primary leg area, supplementary motor area, primary motor cortex, diencephalon and cerebellum. Thus the generation of these two oscillations involves the same network structure and indicates the oscillation at double the tremor frequency is a harmonic of the basic tremor frequency. The orthostatic tremor could have the central oscillator in the brain

    Can Zipf's law be adapted to normalize microarrays?

    Get PDF
    BACKGROUND: Normalization is the process of removing non-biological sources of variation between array experiments. Recent investigations of data in gene expression databases for varying organisms and tissues have shown that the majority of expressed genes exhibit a power-law distribution with an exponent close to -1 (i.e. obey Zipf's law). Based on the observation that our single channel and two channel microarray data sets also followed a power-law distribution, we were motivated to develop a normalization method based on this law, and examine how it compares with existing published techniques. A computationally simple and intuitively appealing technique based on this observation is presented. RESULTS: Using pairwise comparisons using MA plots (log ratio vs. log intensity), we compared this novel method to previously published normalization techniques, namely global normalization to the mean, the quantile method, and a variation on the loess normalization method designed specifically for boutique microarrays. Results indicated that, for single channel microarrays, the quantile method was superior with regard to eliminating intensity-dependent effects (banana curves), but Zipf's law normalization does minimize this effect by rotating the data distribution such that the maximal number of data points lie on the zero of the log ratio axis. For two channel boutique microarrays, the Zipf's law normalizations performed as well as, or better than existing techniques. CONCLUSION: Zipf's law normalization is a useful tool where the Quantile method cannot be applied, as is the case with microarrays containing functionally specific gene sets (boutique arrays)

    The central oscillatory network of essential tremor

    Get PDF
    The responsible pathological mechanisms of essential tremor are not yet clear. In order to understand the mechanisms of the central network its sources need to be found. The cortical sources of both the basic and first “harmonic” frequency of essential tremor are addressed in this paper. The power and coherence were estimated using the multitaper method for EEG and EMG data from 6 essential tremor patients. The Dynamic Imaging of Coherent Sources (DICS) was used to find the coherent sources in the brain. Before hand this method was validated for the application of finding multiple sources for the same oscillation in the brain by using two model simulations which indicated the accuracy of the method. In all the essential tremor patients the corticomuscular coherence was also present in the basic and the first harmonic frequency of the tremor. The source for the basic frequency and the first harmonic frequency was in the region of primary sensory motor cortex, prefrontal and in the diencephalon on the contralateral side for all the patients. Thus the generation of these two oscillations involves the same cortical areas and indicates the oscillation at double the tremor frequency is a harmonic of the basic tremor frequency

    Dynamic imaging of coherent sources reveals different network connectivity underlying the generation and perpetuation of epileptic seizures

    Get PDF
    The concept of focal epilepsies includes a seizure origin in brain regions with hyper synchronous activity (epileptogenic zone and seizure onset zone) and a complex epileptic network of different brain areas involved in the generation, propagation, and modulation of seizures. The purpose of this work was to study functional and effective connectivity between regions involved in networks of epileptic seizures. The beginning and middle part of focal seizures from ictal surface EEG data were analyzed using dynamic imaging of coherent sources (DICS), an inverse solution in the frequency domain which describes neuronal networks and coherences of oscillatory brain activities. The information flow (effective connectivity) between coherent sources was investigated using the renormalized partial directed coherence (RPDC) method. In 8/11 patients, the first and second source of epileptic activity as found by DICS were concordant with the operative resection site; these patients became seizure free after epilepsy surgery. In the remaining 3 patients, the results of DICS / RPDC calculations and the resection site were discordant; these patients had a poorer post-operative outcome. The first sources as found by DICS were located predominantly in cortical structures; subsequent sources included some subcortical structures: thalamus, Nucl. Subthalamicus and cerebellum. DICS seems to be a powerful tool to define the seizure onset zone and the epileptic networks involved. Seizure generation seems to be related to the propagation of epileptic activity from the primary source in the seizure onset zone, and maintenance of seizures is attributed to the perpetuation of epileptic activity between nodes in the epileptic network. Despite of these promising results, this proof of principle study needs further confirmation prior to the use of the described methods in the clinical praxis

    Discrimination of Parkinsonian tremor from essential tremor by implementation of a wavelet-based soft-decision technique on EMG and accelerometer signals

    Get PDF
    A wavelet-decomposition with soft-decision algorithm is used to estimate an approximate power-spectral density (PSD) of both accelerometer and surface EMG signals for the purpose of discrimination of Parkinson tremor from essential tremor. A soft-decision wavelet-based PSD estimation is used with 256 bands for a signal sampled at 800 Hz. The sum of the entropy of the PSD in band 6 (7.8125–9.375 Hz) and band 11 (15.625–17.1875 Hz) is used as a classification factor. The data has been recorded for diagnostic purposes in the Department of Neurology of the University of Kiel, Germany. Two sets of data are used. The training set, which consists of 21 essential-tremor (ET) subjects and 19 Parkinson-disease (PD) subjects, is used to obtain the threshold value of the classification factor differentiating between the two subjects. The test data set, which consists of 20 ET and 20 PD subjects, is used to test the technique and evaluate its performance. A “voting” between three results obtained from accelerometer signal and two EMG signals is applied to obtain the final discrimination. A total accuracy of discrimination of 85% is obtained

    A neural network approach to distinguish Parkinsonian tremor from advanced essential tremor

    Get PDF
    A new technique for discrimination between Parkinsonian tremor and essential tremor is investigated in this paper. The method is based on spectral analysis of both accelerometer and surface EMG signals with neural networks. The discrimination system consists of two parts: feature extraction part and classification (distinguishing) part. The feature extraction part uses the method of approximate spectral density estimation of the data by implementing the wavelet-based soft decision technique. In the classification part, a machine learning approach is implemented using back-propagation supervised neural network. The data has been recorded for diagnostic purposes in the Department of Neurology of the University of Kiel, Germany. Two sets of data are used. The training set, which consists of 21 essential-tremor (ET) subjects and 19 Parkinson-disease (PD) subjects, is used to obtain the important features used for distinguishing between the two subjects. The test data set, which consists of 20 ET and 20 PD subjects, is used to test the technique and evaluate its performance

    Dynamical correlation of non-stationary signals in time domain — a comparative study

    Get PDF
    In a thorough study, the multitaper (MTM) and the extended continuous wavelet-transform (CWT) coherence-analysis methods were compared in terms of there application in determining the dynamics from the electroencephalogram (EEG) and electromyogram (EMG) signals of patients with Parkinsonian tremor. The main aim of the study in a biological point of view is to analyze whether the basic tremor frequency and its “first harmonic” frequency of Parkinsonian tremor are really harmonically related or are in fact distinct processes. The extension of the CWT is achieved by using a Morlet wavelet as the analysis window with an adjustable relative bandwidth which gives the flexibility in setting a desired frequency resolution. In order to obtain a perspective view of the two methods, they were applied to two different model signals to determine their actual threshold in detecting short-lived changes in the analysis of non-stationary signals and to determine their noise thresholds by adding external noise to the signals to test the reduction in coherence to be not merely due to the random fluctuations in stochastic signals. Beyond applying an autoregressive 2nd-order and a coupled van der Pol model system, however, also true EEG and EMG data from five Parkinson patients were used. The results were compared in terms of the time and frequency resolutions of these two methods, and it was determined that the multitaper method was able to detect reduction in power and coherence as short as 1 s. The extended CWT analysis only revealed gaps that were longer than 3 s. The time gaps in the coherence indicate the loss of connection between the cortex and muscle during the respective time intervals. This more accurate analysis of the MTM was also seen in the dynamical EEG–EMG coherence at the tremor frequency and its “first harmonic” of Parkinsonian patients. In terms of our “biological” aim, this shows distinct prevalence of the corticomuscular coupling at those frequencies over time. Applying this method to biological data reveals important aspects about their dynamics, e.g., the distinct dynamics between basic frequency and “first harmonic” frequency over time in Parkinsonian tremor

    Locating the STN-DBS electrodes and resolving their subsequent networks using coherent source analysis on EEG

    Get PDF
    The deep brain stimulation (DBS) of the subthalamic nucleus (STN) is the most effective surgical therapy for Parkinson's disease (PD). The first aim of the study was to locate the STN-DBS electrode by applying source analysis on EEG. Secondly, to identify tremor related areas which are associated with the STN. The Dynamic imaging of coherent sources (DICS) was used to find the coherent sources in the brain. The capability of the source analysis to detect deep sources like STN in the brain using EEG data was tested with two model dipole simulations. The simulations were concentrated on two aspects, the angle of the dipole orientation and the disturbance of the cortical areas on locating subcortical regions. In all the DBS treated Parkinsonian tremor patients the power spectrum showed a clear peak at the stimulated frequency and followed by there harmonics. The DBS stimulated frequency constituted a network of primary sensory motor cortex, supplementary motor area, prefrontal cortex, diencephalon, cerebellum and brainstem. Thus the STN was located in the region of the diencephalon. The resolved network may give better understanding to the pathophysiology of the effected tremor network in PD patients with STN-DBS

    Investigation of Magnetoelectric Sensor Requirements for Deep Brain Stimulation Electrode Localization and Rotational Orientation Detection

    Get PDF
    Correct position and orientation of a directional deep brain stimulation (DBS) electrode in the patient's brain must be known to fully exploit its benefit in guiding stimulation programming. Magnetoelectric (ME) sensors can play a critical role here. The aim of this study was to determine the minimum required limit of detection (LOD) of a ME sensor that can be used for this application by measuring the magnetic field induced by DBS. For this experiment, a commercial DBS system was integrated into a head phantom and placed inside of a state-of-the-art Superconducting Quantum Interference Device (SQUID)-based magnetoencephalography system. Measurements were performed and analyzed with digital signal processing. Investigations have shown that the minimum required detection limit depends on various factors such as: measurement distance to electrode, bandwidth of magnetic sensor, stimulation amplitude, stimulation pulse width, and measurement duration. For a sensor that detects only a single DBS frequency (stimulation frequency or its harmonics), a LOD of at least 0.04 pT/Hz0.5 is required for 3 mA stimulation amplitude and 60 ÎĽÎĽs pulse width. This LOD value increases by an order of magnitude to 0.4 pT/Hz0.5 for a 1 kHz, and by approximately two orders to 3 pT/Hz0.5 for a 10 kHz sensor bandwidth. By averaging, the LOD can be reduced by at least another 2 orders of magnitude with a measurement duration of a few minutes

    Cortical correlates of the basic and first harmonic frequency of Parkinsonian tremor

    Get PDF
    Objective It has been hypothesized that the basic and first harmonic frequency of Parkinsonian tremor are somewhat independent oscillations the biological basis of which remains unclear. Methods We recorded 64-channel EEG in parallel with EMG of the forearm muscles most affected by rest tremor in 21 PD patients. EMG power spectrum, corticomuscular coherence spectra and EEG power spectra for each EEG electrode were calculated. The dynamics of the coherence and relative EMG and EEG power at the basic (tremor) frequency were calculated by a sliding, overlapping window analysis. Corticomuscular delays and direction of interaction were analysed by the maximizing coherence method for narrow band signals. Results The contralateral EEG electrodes with maximal coherence were different for the basic and first harmonic frequency. The dynamical coherence curves showed non-parallel time courses for the two frequencies. The mean EEG-EMG and EMG-EEG delays were all around 15–20 ms but significantly longer for the first harmonic than for the basic frequency. Conclusions Our data indicate different cortical representations and corticomuscular interaction of the basic and first harmonic frequencies of Parkinsonian tremor. Significance Separate central generators seem to contribute to the tremor via different pathways. Further studies on this complex tremor network are warranted
    • …
    corecore