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Abstract. A new technique for discrimination between Parkinsonian tremor and 
essential tremor is investigated in this paper. The method is based on spectral 
analysis of both accelerometer and surface EMG signals with neural networks. 
The discrimination system consists of two parts: feature extraction part and 
classification (distinguishing) part. The feature extraction part uses the method of 
approximate spectral density estimation of the data by implementing the wavelet-
based soft decision technique. In the classification part, a machine learning 
approach is implemented using back-propagation supervised neural network. The 
data has been recorded for diagnostic purposes in the Department of Neurology of 
the University of Kiel, Germany.  Two sets of data are used. The training set, 
which consists of 21 essential-tremor (ET) subjects and 19 Parkinson-disease (PD) 
subjects, is used to obtain the important features used for distinguishing between 
the two subjects.  The test data set, which consists of 20 ET and 20 PD subjects, is 
used to test the technique and evaluate its performance. 

Keywords: Wavelet-Decomposition, Soft-Decision Technique, Parkinsonian 
Tremor, Essential Tremor, EMG, Accelerometer, Artificial Neural Networks. 

1   Introduction 

Essential tremor (ET) and the tremor in Parkinson's disease (PD) are the two most 
common pathological tremor forms encountered in clinical neurology [1]. 
Differential diagnosis between the two tremors is usually achieved clinically. But 
there is a certain overlap in the clinical presentation between the two diseases that 
can make the differentiation on purely clinical grounds difficult [2]. In such cases, 
functional imaging of the dopaminergic deficit as the hallmark of PD is considered 
the diagnostic gold standard [3-4]. However, this requires SPECT (Single Photon 
Emission Computer Tomography) technology, injection of a radioactivity-labeled 
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dopamine transporter ligand into the patients (DAT-Scan), and needs a 
considerable amount of time. Thus more readily available and easier diagnostic 
tests are desirable [5]. Spectral analysis of tremor time-series recorded by 
accelerometry and surface EMG is a common approach [6]. It has proven useful to 
distinguish between physiological and pathological tremor [7], but is not superior 
to the clinical assessment in the distinction of ET from PD in its present form [8]. 
Therefore methods beyond the standard spectral analysis of the recorded tremor 
time-series have been applied to safely separate ET and PD [9-14]. A new 
approach of spectral analysis is investigated in [15]. This approach is based on a 
soft-decision wavelet-decomposition technique and it succeeds in obtaining 85% 
accuracy of discrimination of ET from PD.  In this paper the wavelet-based soft-
decision approach is combined with a neural network. The organization of the 
paper is as follows: 

In section 2, both the trial data and test data are described. Section 3 contains 
the main idea of the soft-decision wavelet-based technique. The results of its 
implementation on test data using neural networks and discussion of the results are 
given in section 4. Conclusions are given in section 5. 

2   Data 

In this study, a total of 39 PD and 41 ET subjects were analyzed. The training set 
consists of 21 ET and 19 PD subjects, while the test set consists of 20 ET and 20 
PD subjects. The mean age, sex and disease duration of the PD patients were 
compared with the ET patients for the trial and test data in Tables 1 & 2, 
respectively. 

Table 1. Description of trial data of both PD and ET subjects 

PD ET 
Number of 

Patients 
19 21 

Mean Age 
(Range) 

64.54 (40-90) Years 
63.24 (27-94) 

Years 
Gender 

(Male/Female) 
11/8 12/9 

Mean 
Disease 
Duration 

16.4 Years 34 Years 
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Table 2. Description of test data T of both PD and ET subjects 

PD ET 
Number of 

Patients 
20 20 

Mean Age 
(Range) 

68.22 (52-85) Years 
64.52 (32-86) 

Years 
Gender 

(Male/Female) 
12/8 11/9 

Mean Disease 
Duration 

15.3 Years 29 Years 

A piezoelectric accelerometer of about 2g was fixed to the dorsum of the more 
affected hand (selected clinically) in the middle of the third metacarpal bone, and 
bipolar surface-EMG recordings with silver-silver-chloride electrodes from 
forearm flexors (EMG1) and extensors (EMG2) were taken. All data were 
sampled at 800 Hz. The EMG was band-pass filtered between 50 and 350 Hz and 
full-wave rectified. The relatively high sampling frequency was useful for the 
EMG recordings as within the bursts there are frequency components up to 350 
Hz and can only be fully picked up with such a sampling frequency to satisfy the 
Nyquist theorem. 

3   Soft-Decision Wavelet-Decomposition 

3.1   Wavelet-Decomposition 

The block-diagram of a one-stage wavelet-decomposition is shown in Fig.1. 

Fig. 1. A Single Stage of Wavelet Decomposition 

The input signal x(n) of length-N is first filtered by low-pass (LPF) and high-
pass (HPF) filters and then down-sampled by a factor of 2 to produce both the 
"approximation" a(n) and the "details" d(n). Assuming Hadamard-filters are used, 
a(n) and d(n) can be obtained by: 
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If there is no information about the energy distribution of the input sequence, a 
band-selection algorithm [16] can be used to decide (as a hard decision) which 
band is to be computed or kept for more processing. This method depends on the 
energy comparison between the low- and high-frequency subsequences after the 
down sampling in Fig.1. 
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According to the sign of B, the decision is taken: If B is positive, the low-
frequency band is considered, and if B is negative, the high-frequency band is 
considered. Since we are not interested in the value of B, but only in its sign, a 
more-simpler equation than Eq.2 can be obtained approximately as [17]: 
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3.2   Soft-Decision Algorithm 

The soft-decision algorithm can be summarized in the following steps: 

1) The one stage decomposition (Fig.1) is computed with all branches up to a 
certain pre-selected stage. 

2) All estimator results up to this stage are stored, and their outputs are given a 
probabilistic interpretation by assigning a probability measure to each path. 

3) If J(L) is the assigned probability of the input signal being primarily low- 
pass, the number J(H) = 1- J(L) is the probability that the signal is primarily 
high-pass. 

At the following stage, the resulting estimate can be interpreted as the conditional 
probability of the new input sequence containing primarily low (high) frequency 
components, given that the previous branch was predominantly low (high)-pass. 
Using this reasoning and laws of probability, the assignments for the probability 
measure of the resulting subbands should be made equal to the product of the 
previous branch probability and the conditional probability estimated at a given 
stage (see Fig.2). The above probabilities derived from the estimator outputs may 
be interpreted themselves as a coarse measurement of the power spectral density 
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[17]. The higher the probability value of a particular band, the higher is its power-
spectral content! So, after m-stage decomposition, a staircase approximation of the 
PSD is obtained, when the 2m probabilities are plotted. For m=8, 256-subbands are 
resulted, each covering 400/256 Hz of the spectrum (0-400) Hz. 

4   The Artificial Neural Networks 

Before discussing the classification network used in this work, let us define the 
key features used in classification. The power spectral density of the first 16 bands 
out of 256 bands of Accelerometer, EMG1 and EMG2 signals is used as key 
features of the neural network.  The selection of the 16 bands was on a prior 
information that the frequency of both tremors and their important harmonics are 
allocated in those bands. 

Fig. 2. The Soft-Decision Algorithm 

4.1   Supervised Neural Network 

In supervised learning, the training input data is composed of feature vector and 
the corresponding target output values. This approach is commonly described as 
learning with a teacher, since the desired output of a given input vectors is known 
and used during the learning process. The implementation of the supervised 
classification network is done according to the following two steps: 

4.1.1   Training Stage of the Supervised ANN 

A neural network of the type feed-forward back-propagation [18] (referred to as a 
multi-layer perceptron) is used in this approach. This network consists of three 
layers. The first layer (input layer) accepts 16 input signals (B1 to B16) from the 
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outside world and redistributes these signals to all neurons in the second layer. 
Actually, the input layer does not include computing neurons. The second layer 
(hidden layer) with a size of (3, 1) has three hyperbolic tangent sigmoid "tansig" 
neurons. The selection of "tansig" neurons was due to the nature of the difference 
of input features (PSD of the 16 bands) between the two classes (PD and ET) 
under investigation. Any PSD value is located between a maximum and a 
minimum, which can be easily simulated by a "tansig" function. The Neurons in 
the hidden layer detect the features; the weights of the neurons represent the 
features hidden in the input patterns. These features are then used by the third 
layer (output layer) in determining the output pattern. This third layer has one 
linear "purelin" neuron in our approach since the output is one out of two cases 
(PD or ET). The whole network has a single output that corresponds to one out of 
the two types under classification (ET or PD). The features extracted are the 
outputs of the properly designed hidden layer. 

Fig.3 shows the three-layer back-propagation neural network used in the 
training. Since the neural network needs large set of data for training, a 2000 data 
set (1000 PD and 1000 ET) is simulated randomly to satisfy the spectral ranges of 
the 16 bands obtained from 21 ET and 19 PD (the original training data). Any new 
data is simulated by assignments of 16 PSD values corresponding to the 16 
frequency bands in such a way that the PSD of any region is selected randomly 
between the minimum PSD and the maximum PSD of that region in the original 
set of data. The assigned PSD value is a random number having a mean value 
equals the average between the minimum PSD and the maximum PSD and a 
standard deviation with 10% to 20% of the maximum PSD. 

4.1.2   Testing Stage of the Supervised ANN 

At this stage the power spectral densities of the test data (1000 ET and 1000 PD), 
simulated randomly to satisfy the spectral ranges of the 16 bands obtained from 20 
ET and 20 PD subjects (of the original test data set), are fed to the 16 inputs of the 
neural network. The assumed output is either 1 for PD or 2 for ET. In this work, 
binary classification is considered, e.g. classification between two different cases, 
positive (PD) and negative cases (ET). The performance of a classifier is 
evaluated by three main metrics: Specificity, Sensitivity and Accuracy as follows 
[19]: 
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where the entities in the above equations are defined in confusion matrix shown in 
Table 3, and T is the total number of data under test. 

Table 3. The Confusion Matrix 

Predicted Class a 
Actual Class a Positive (P) Negative (N) 

Positive (P) TP FN 
Negative (N) FP TN 

aPositive = PD, Negative = ET, T=True, F=False 

Results are shown in Tables 4 and 5 using each signal (Accel., EMG1, EMG2) 
individually and using all three signals with 48-inputs to the neural network . In 
Table 5, the training and testing sets are interchanged to test the consistency of the 
algorithm and its data independency. 

Table 4. Results obtained from test data 

Signal Specificity Sensitivity Accuracy 
Accel. 59% 70.6% 64% 
EMG1 98.5% 98.3% 98.4% 
EMG2 55.2% 95.6% 75.4% 

All Signals 88.2% 95% 91.6% 

Table 5. Results obtained from training data 

Signal Specificity Sensitivity Accuracy 
Accel. 85.8% 86.9% 86.3% 
EMG1 80% 89.6% 84.8% 
EMG2 92.5% 76.9% 84.7% 

All Signals 94.9% 94% 94.4% 
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Fig. 3. The Artificial Neural Network Structure 

5   Conclusions 

A new identification method for PD from ET subjects is investigated. The method 
is based on the soft-decision wavelet-decomposition power spectral estimation and 
neural network. The first 16-bands out of 256 bands are used to represent the 
power-spectral density that forms the classification features. The accuracy of 
classification approaches 91.6% and 94.4% by testing the designed supervised 
neural network on test data set and training data set, respectively.  In brief, the 
technique used in this paper, is a complete distinguishing system between ET and 
PD, that is data-independent, simple, efficient with automatic results. 
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