16 research outputs found

    A multi-physics level set approach for the simulation of the hybrid Laser/GMAW process

    No full text
    International audienceA new hybrid welding technique has recently been developed in order to answer to the industry needs to gather high thickness steel sheets. The combination of a laser beam and a gas metal arc enables to develop welds with a high added metal rate and low porosity. Moreover lower deformation and residual stresses are observed after cooling. Nevertheless the mastery of this technique is still in development due to the various physical phenomena which occur and interact during the welding process. A three dimensional finite element model has been developed to simulate this welding process. Metal and air gas domains are both meshed. A Eulerian-Lagrangian approach is used in which the interface between the metal and the surrounding air or plasma is defined by a level set function. Fluid flow phenomena and temperature evolution in the weld pool are simulated. Two moving heat sources are considered at the surface of the metal. As the arc plasma and laser beam are not modeled in the level set framework, the 'Continuum Surface Force' approach is used: a volumetric heat source distribution is applied to the immediate neighbourhood of the interface. The added metal represents an additional heat source. The Navier-Stokes equations are solved in the weld pool regarding the surface Marangoni force, the volumetric buoyancy. After solving the momentum conservation equation, metal / air interface is tracked through the resolution of a convection equation with the calculated velocity field as input. As the hybrid welding technique is usually a multi-pass process applied on high thickness piece with high chamfer, it is of primary importance to develop a correct modeling of solid / solid contact interfaces. It is shown that the present level set approach coupled with an adaptative remeshing tool enables to follow these interfaces to simulate the entire process steps. Weld geometry on a specific steel alloy is shown and compared to the expected result

    Modelling of the bead formation during multi pass hybrid laser/gas metal arc welding

    No full text
    International audienceA three dimensional finite element model has been developed to simulate weld bead formation in multi pass hybrid laser/gas metal arc welding. The model considers both a gas metal arc welding (GMAW) electrode and a laser beam moving along a workpiece. A Eulerian approach is used in which the interface between the metal and the surrounding gas or plasma is defined by a level set function. Therefore heat transfer boundary conditions are applied through a "Continuum Surface Force" model. An original method has been settled to model material supply. A volume expansion source term is added to the right hand side of the mass conservation equation for certain liquid finite elements in the fusion zone. A compressible Navier Stokes equation is then solved. The new obtained velocity field is used to solve the transport of the level set function for the updating of the gas/metal interface. A new topological reinitialization method has been developed to hold the Eikonal property in the compressible framework of the level set transport. The efficiency of this global model enables to simulate industrial multi pass hybrid welding processes

    A level set approach for the simulation of the multipass hybrid laser/GMA welding process

    No full text
    International audienceA new 3D finite element model, developed in a level set approach, is proposed to model hybrid gas metal arc/laser welding in multipass conditions. This heat and mass transfer model couples the resolution of the heat conservation equation, the momentum and mass conservation equations and the weld bead development. The arc welding total power is divided in two parts: one corresponding to the energy transferred to the fusion zone by droplets of melted filler material, the rest being transferred to the workpiece by the surrounding plasma. The droplets energy input is modelled as a volumetric heat source. Regarding the heat surface fluxes associated with plasma and laser heating, the "Continuum Surface Force" approach is used to model them as volumetric heat sources concentrated in the immediate neighbourhood of the metal-gas interface. A resolution scheme, consisting in ignoring high velocity fluid flow in the fusion zone, through the use of an augmented liquid viscosity, is proposed and discussed. Accordingly, the liquid thermal conductivity is enhanced to result in a realistic heat transfer to the workpiece. The formation of the weld bead is obtained through the introduction of a source term in the mass conservation equation, and the application of the normal component of surface tension forces, proportional to the mean curvature of the metal-gas interface. This approach is proposed to reduce computation time. The resolution scheme is applied to the simulation of hybrid welding of 18MND5 (ASME SA 533) steel grade. Results are compared to experimental measurements and observations operated in conditions close to industrial ones. The influence of the enhancement applied to the liquid conductivity coefficient is shown and discussed. A strong sensitivity evolution is demonstrated when varying it from the physical value to the value proposed in the welding literature. As proposed, the simplified resolution scheme leads to a good estimation of the weld bead surface development. Nevertheless, there are still noticeable differences with the whole set of experimental results that are discussed and can be explained by model limitations and insufficient knowledge of material and interfacial properties

    Numerical modelling of hybrid arc/laser welding: a coupled approach to weld bead formation and residual stresses

    No full text
    International audienceThe joining of high thickness steel sheets by means of hybrid Laser/GMAW welding processes is studied in this paper. A three dimensional finite element model has been developed to simulate this process. Through an ALE framework, a level set approach is used to model the interface between the metal and the surrounding gas. Even though the physics of the plasma is not modelled, both thermal and material supply phenomena are taken into account: (i) The laser and GMAW heat sources are simulated and applied on the interface through the Continuum Surface Force method, (ii) An original method of volume element expansion has been chosen to simulate the material supply and the bead formation. A thermo mechanical problem resolution has been settled in this model. Depending on the thermal evolution of the mechanical parameters and on the velocity field, the material behaviour will be elastic, elasto-visco-plastic or visco-plastic. The ALE approach enables to compute the stresses inside the workpiece and to obtain the displacements of the workpiece borders. Two finite elements models are presented to illustrate: (i) A hybrid arc/laser welding simulation through the thermal and material supply resolution, (ii) A TIG welding simulation through the stress and strain mechanical resolution

    Colloquium: Mechanical formalisms for tissue dynamics

    Full text link
    The understanding of morphogenesis in living organisms has been renewed by tremendous progressin experimental techniques that provide access to cell-scale, quantitative information both on theshapes of cells within tissues and on the genes being expressed. This information suggests that ourunderstanding of the respective contributions of gene expression and mechanics, and of their crucialentanglement, will soon leap forward. Biomechanics increasingly benefits from models, which assistthe design and interpretation of experiments, point out the main ingredients and assumptions, andultimately lead to predictions. The newly accessible local information thus calls for a reflectionon how to select suitable classes of mechanical models. We review both mechanical ingredientssuggested by the current knowledge of tissue behaviour, and modelling methods that can helpgenerate a rheological diagram or a constitutive equation. We distinguish cell scale ("intra-cell")and tissue scale ("inter-cell") contributions. We recall the mathematical framework developpedfor continuum materials and explain how to transform a constitutive equation into a set of partialdifferential equations amenable to numerical resolution. We show that when plastic behaviour isrelevant, the dissipation function formalism appears appropriate to generate constitutive equations;its variational nature facilitates numerical implementation, and we discuss adaptations needed in thecase of large deformations. The present article gathers theoretical methods that can readily enhancethe significance of the data to be extracted from recent or future high throughput biomechanicalexperiments.Comment: 33 pages, 20 figures. This version (26 Sept. 2015) contains a few corrections to the published version, all in Appendix D.2 devoted to large deformation

    Modélisation numérique d'un procédé de soudage hybride arc / laser en approche level set : application au soudage multi-passes de tôles d'acier de forte épaisseur

    No full text
    Hybrid arc / laser welding represents the solution for high thickness steel sheets assembly. The laser heat source added to the MIG torch improves the process productivity while respecting quality standards. Nevertheless, the phenomenology of the process remains complex and not totally understood. This is the thrust for the development of numerical simulation. The present study has been carried out as part of the "SISHYFE" Material and Process ANR project.For that purpose, a new non stationary 3D finite element model has been developed. Based on the level set approach, it allows to simulate a multipass hybrid arc/ laser welding process. The work focused on four research axes. (1) A more representative model of the plasma heat source has been defined, based on thermal radiation. (2) The coupling of a material and a heat source term integrated in the conservation equations and the update of the level set gas / metal interface is able to correctly model the formation of the weld bead. (3) The integration of a fluid flow model within the level set approach has been evaluated and its impact on thermal distribution analyzed. (4) The stress formation during and after the process has been modeled through the adaptation of a thermo-mechanical solver to the previous modeling in a level set framework.In the end, the developed model has shown to be able to simulate an industrial multi-pass hybrid arc / laser welding process. Experimental measurements provided by the project partners have been used to evaluate the model and to assess its abilities to reproduce experimental features.Le soudage hybride arc / laser représente une solution adéquate à l'assemblage de tôles d'acier de forte épaisseur. La présence d'une source laser en amont de la torche MIG permet d'accroître la productivité du procédé tout en assurant une excellente qualité de la soudure. Cependant la phénoménologie complexe de ce procédé multiphysique n'est pas encore totalement maîtrisée, ce qui motive le développement d'outils de simulation numérique. La présente étude s'est déroulée dans le cadre d'un projet multipartenaires "SISHYFE" (ANR Matériaux et Procédés).Dans ce but un modèle éléments finis 3D non stationnaire a été développé. Construit à partir de l'approche level set, il est en mesure de simuler un procédé multi-passes de soudage hybride arc / laser. Il a été développé autour de quatre principaux axes. (1) Une modélisation plus réaliste de l'apport de chaleur a conduit à la définition d'un nouveau modèle basé sur le rayonnement thermique pour décrire la source MIG. (2) Grâce au couplage entre l'intégration de termes source de matière et de chaleur dans les équations de conservation et l'actualisation de l'interface gaz / métal, le modèle proposé est capable de simuler le développement d'un cordon de soudure. (3) L'intégration d'une modélisation des écoulements du bain de fusion dans une approche level set a été évaluée et son impact sur la distribution thermique dans le métal analysé. (4) La simulation de la formation des contraintes pendant et après soudage a été possible grâce à l'adaptation d'un solveur thermomécanique.La modélisation finale a permis de simuler une configuration industrielle de soudage hybride arc / laser multi-passes. Des mesures expérimentales effectuées par les partenaires du projet "SISHYFE" ont été utilisées afin d'évaluer le modèle et d'éprouver sa capacité à reproduire l'expérience

    Numerical modeling of a hybrid arc / laser welding process in a level set framework : application to multipass welding of high thickness steel sheets

    No full text
    Le soudage hybride arc / laser représente une solution adéquate à l'assemblage de tôles d'acier de forte épaisseur. La présence d'une source laser en amont de la torche MIG permet d'accroître la productivité du procédé tout en assurant une excellente qualité de la soudure. Cependant la phénoménologie complexe de ce procédé multiphysique n'est pas encore totalement maîtrisée, ce qui motive le développement d'outils de simulation numérique. La présente étude s'est déroulée dans le cadre d'un projet multipartenaires "SISHYFE" (ANR Matériaux et Procédés).Dans ce but un modèle éléments finis 3D non stationnaire a été développé. Construit à partir de l'approche level set, il est en mesure de simuler un procédé multi-passes de soudage hybride arc / laser. Il a été développé autour de quatre principaux axes. (1) Une modélisation plus réaliste de l'apport de chaleur a conduit à la définition d'un nouveau modèle basé sur le rayonnement thermique pour décrire la source MIG. (2) Grâce au couplage entre l'intégration de termes source de matière et de chaleur dans les équations de conservation et l'actualisation de l'interface gaz / métal, le modèle proposé est capable de simuler le développement d'un cordon de soudure. (3) L'intégration d'une modélisation des écoulements du bain de fusion dans une approche level set a été évaluée et son impact sur la distribution thermique dans le métal analysé. (4) La simulation de la formation des contraintes pendant et après soudage a été possible grâce à l'adaptation d'un solveur thermomécanique.La modélisation finale a permis de simuler une configuration industrielle de soudage hybride arc / laser multi-passes. Des mesures expérimentales effectuées par les partenaires du projet "SISHYFE" ont été utilisées afin d'évaluer le modèle et d'éprouver sa capacité à reproduire l'expérience.Hybrid arc / laser welding represents the solution for high thickness steel sheets assembly. The laser heat source added to the MIG torch improves the process productivity while respecting quality standards. Nevertheless, the phenomenology of the process remains complex and not totally understood. This is the thrust for the development of numerical simulation. The present study has been carried out as part of the "SISHYFE" Material and Process ANR project.For that purpose, a new non stationary 3D finite element model has been developed. Based on the level set approach, it allows to simulate a multipass hybrid arc/ laser welding process. The work focused on four research axes. (1) A more representative model of the plasma heat source has been defined, based on thermal radiation. (2) The coupling of a material and a heat source term integrated in the conservation equations and the update of the level set gas / metal interface is able to correctly model the formation of the weld bead. (3) The integration of a fluid flow model within the level set approach has been evaluated and its impact on thermal distribution analyzed. (4) The stress formation during and after the process has been modeled through the adaptation of a thermo-mechanical solver to the previous modeling in a level set framework.In the end, the developed model has shown to be able to simulate an industrial multi-pass hybrid arc / laser welding process. Experimental measurements provided by the project partners have been used to evaluate the model and to assess its abilities to reproduce experimental features

    Elaboration par enroulement filamentaire et caractérisation de composites à matrice biphasée C-Sic renforcés par des fibres de carbonne

    No full text
    Pour un coût réduit, des technologies de mise en oeuvre des composites carbone-carbone, telle l'impregnation en voie liquide à partir de résines cokéfiables, peuvent être adaptées afin de répondre au besoin des industries spatiales et de défense en matière de matériaux résistants à haute température et en atmosphère oxydante. Dans cette étude les composites sont élaborés par enroulement filamentaire ou "bobinage" d'une fibre de carbonne, technique dans laquelle l'incorporation de la matrice s'effectue simultanément à l'élaboration de l'architecture fibreuse. La matrice est composée d'une résine phénolique, à rendement de coke élevé, chargée d'une poudre de SiC qui constitue une protection in-situ contre l'oxydation du composite. La faisabilité d'un composite bobiné SiC/C par frittage naturel est étudiée en relation avec le comportement de matériaux existants. Puis, des composites C-SiC/C de la matrice constituant un compromis optimum entre résistance à l'oxydation (SiC) et résistance mécanique. Les conditions de la polymérisation sont étudiées en fonction de la composition et de l'épaisseur des produits traités. La caractérisation mécanique en flexion trois points de composites unidirectionnels plans permet d'établir les conditions du traitement de pyrolyse (température maximale et vitesse de montée en température). A partir de ces études préliminaires, deux compositions de barbotine sont retenues pour l'élaboration de composites cylindriques à architecture de renfort 1D, 2D, et "3D". La caractérisation de la microstructure, la résistance à des attaques thermiques en milieu oxydant et la résistance mécanique permettent une étude comparative des composites. La teneur en résine des barbotines d'imprégnation joue un rôle déterminant sur l'imprégnation du renfort fibreux, cela d'autant plus que le nombre de directions est important. Les évolutions de la microstructure qui en résultent conditionnent les propriétés thermiques et mécaniques des composites.LIMOGES-BU Sciences (870852109) / SudocSudocFranceF

    Modélisation du procédé de soudage hybride Arc / Laser par une approche level set application aux toles d'aciers de fortes épaisseurs A level-set approach for the modelling of hybrid arc/laser welding process application for high thickness steel sheets joining

    No full text
    Le procédé de soudage hybride Arc/Laser est une solution aux assemblages difficiles de tôles de fortes épaisseurs. Ce procédé innovant associe deux sources de chaleur : un arc électrique produit par une torche MIG et une source laser placée en amont. Ce couplage améliore le rendement du procédé, la qualité du cordon et les déformations finales. La modélisation de ce procédé par une approche Level Set permet une prédiction du développement du cordon et du champ de température associé. La simulation du soudage multi-passes d'une nuance d'acier 18MnNiMo5 est présentée ici et les résultats sont comparés aux observations expérimentales. <br> The hybrid arc/laser welding process has been developed in order to overcome the difficulties encountered for joining high thickness steel sheets. This innovative process gathers two heat sources: an arc source developed by a MIG torch and a pre-located laser source. This coupling improves the efficiency of the process, the weld bead quality and the final deformations. The Level-Set approach for the modelling of this process enables the prediction of the weld bead development and the temperature field evolution. The simulation of the multi-passes welding of a 18MnNiMo5 steel grade is detailed and the results are compared to the experimental observations
    corecore