82 research outputs found
Association among plasma levels of monocyte chemoattractant protein-1, traditional cardiovascular risk factors, and subclinical atherosclerosis
ObjectivesWe sought to evaluate the association between plasma levels of monocyte chemoattractant protein (MCP)-1 and the risk for subclinical atherosclerosis.BackgroundMonocyte chemoattractant protein is a chemokine that recruits monocytes into the developing atheroma and may contribute to atherosclerotic disease development and progression. Plasma levels of MCP-1 are independently associated with prognosis in patients with acute coronary syndromes, but few population-based data are available from subjects in earlier stages of atherosclerosis.MethodsIn the Dallas Heart Study, a population-based probability sample of adults in Dallas County â€65 years old, plasma levels of MCP-1 were measured in 3,499 subjects and correlated with traditional cardiovascular risk factors, high-sensitivityC-reactive protein (hs-CRP), and coronary artery calcium (CAC) measured by electron beam computed tomography.ResultsHigher MCP-1 levels were associated with older age, white race, family history of premature coronary disease, smoking, hypertension, diabetes, hypercholesterolemia, and higher levels of hs-CRP (p < 0.01 for each). Similar associations were observed between MCP-1 and risk factors in the subgroup of participants without detectable CAC. Compared with the subjects in the lowest quartile of MCP-1, the odds of prevalent CAC (CAC score â„10) for subjects in the second, third, and fourth quartiles were 1.30 (95% confidence interval [CI] 0.99 to 1.73), 1.60 (95% CI 1.22 to 2.11), and 2.02 (95% CI 1.54 to 2.63), respectively. The association between MCP-1 and CAC remained significant when adjusted for traditional cardiovascular risk factors, but not when further adjusted for age.ConclusionsIn a large population-based sample, plasma levels of MCP-1 were associated with traditional risk factors for atherosclerosis, supporting the hypothesis that MCP-1 may mediate some of the atherogenic effects of these risk factors. These findings support the potential role of MCP-1 as a biomarker target for drug development
Recommended from our members
Cardiac Biomarkers and Risk of Atrial Fibrillation in Chronic Kidney Disease: The CRIC Study.
Background We tested associations of cardiac biomarkers of myocardial stretch, injury, inflammation, and fibrosis with the risk of incident atrial fibrillation (AF) in a prospective study of chronic kidney disease patients. Methods and Results The study sample was 3053 participants with chronic kidney disease in the multicenter CRIC (Chronic Renal Insufficiency Cohort) study who were not identified as having AF at baseline. Cardiac biomarkers, measured at baseline, were NT-proBNP (N-terminal pro-B-type natriuretic peptide), high-sensitivity troponin T, galectin-3, growth differentiation factor-15, and soluble ST-2. Incident AF ("AF event") was defined as a hospitalization for AF. During a median follow-up of 8Â years, 279 (9%) participants developed a new AF event. In adjusted models, higher baseline log-transformed NT-proBNP (N-terminal pro-B-type natriuretic peptide) was associated with incident AF (adjusted hazard ratio [HR] per SD higher concentration: 2.11; 95% CI, 1.75, 2.55), as was log-high-sensitivity troponin T (HR 1.42; 95% CI, 1.20, 1.68). These associations showed a dose-response relationship in categorical analyses. Although log-soluble ST-2 was associated with AF risk in continuous models (HR per SD higher concentration 1.35; 95% CI, 1.16, 1.58), this association was not consistent in categorical analyses. Log-galectin-3 (HR 1.05; 95% CI, 0.91, 1.22) and log-growth differentiation factor-15 (HR 1.16; 95% CI, 0.96, 1.40) were not significantly associated with incident AF. Conclusions We found strong associations between higher NT-proBNP (N-terminal pro-B-type natriuretic peptide) and high-sensitivity troponin T concentrations, and the risk of incident AF in a large cohort of participants with chronic kidney disease. Increased atrial myocardial stretch and myocardial cell injury may be implicated in the high burden of AF in patients with chronic kidney disease
Recommended from our members
The Pathogenesis and Long-Term Consequences of COVID-19 Cardiac Injury.
The mechanisms of coronavirus disease-2019 (COVID-19)-related myocardial injury comprise both direct viral invasion and indirect (hypercoagulability and immune-mediated) cellular injuries. Some patients with COVID-19 cardiac involvement have poor clinical outcomes, with preliminary data suggesting long-term structural and functional changes. These include persistent myocardial fibrosis, edema, and intraventricular thrombi with embolic events, while functionally, the left ventricle is enlarged, with a reduced ejection fraction and new-onset arrhythmias reported in a number of patients. Myocarditis post-COVID-19 vaccination is rare but more common among young male patients. Larger studies, including prospective data from biobanks, will be useful in expanding these early findings and determining their validity
The Pathogenesis and Long-Term Consequences of COVID-19 Cardiac Injury.
The mechanisms of coronavirus disease-2019 (COVID-19)-related myocardial injury comprise both direct viral invasion and indirect (hypercoagulability and immune-mediated) cellular injuries. Some patients with COVID-19 cardiac involvement have poor clinical outcomes, with preliminary data suggesting long-term structural and functional changes. These include persistent myocardial fibrosis, edema, and intraventricular thrombi with embolic events, while functionally, the left ventricle is enlarged, with a reduced ejection fraction and new-onset arrhythmias reported in a number of patients. Myocarditis post-COVID-19 vaccination is rare but more common among young male patients. Larger studies, including prospective data from biobanks, will be useful in expanding these early findings and determining their validity
Kidney function and sudden cardiac death in the community: The Atherosclerosis Risk in Communities (ARIC) Study
Individuals with chronic kidney disease, particularly those requiring dialysis, are at high risk of sudden cardiac death (SCD). However, comprehensive data for the full-spectrum of kidney function and SCD risk in the community are sparse. Furthermore, newly developed equations for estimated glomerular filtration rate (eGFR) and novel filtration markers might add further insight to the role of kidney function in SCD
Kidney function and sudden cardiac death in the community: The Atherosclerosis Risk in Communities (ARIC) Study
Individuals with chronic kidney disease, particularly those requiring dialysis, are at high risk of sudden cardiac death (SCD). However, comprehensive data for the full-spectrum of kidney function and SCD risk in the community are sparse. Furthermore, newly developed equations for estimated glomerular filtration rate (eGFR) and novel filtration markers might add further insight to the role of kidney function in SCD
Chronic kidney disease and arrhythmias: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference.
Patients with chronic kidney disease (CKD) are predisposed to heart rhythm disorders, including atrial fibrillation (AF)/atrial flutter, supraventricular tachycardias, ventricular arrhythmias, and sudden cardiac death (SCD). While treatment options, including drug, device, and procedural therapies, are available, their use in the setting of CKD is complex and limited. Patients with CKD and end-stage kidney disease (ESKD) have historically been under-represented or excluded from randomized trials of arrhythmia treatment strategies,1 although this situation is changing.2 Cardiovascular society consensus documents have recently identified evidence gaps for treating patients with CKD and heart rhythm disorders [...
Genome-Wide Association Studies of the PR Interval in African Americans
The PR interval on the electrocardiogram reflects atrial and atrioventricular nodal conduction time. The PR interval is heritable, provides important information about arrhythmia risk, and has been suggested to differ among human races. Genome-wide association (GWA) studies have identified common genetic determinants of the PR interval in individuals of European and Asian ancestry, but there is a general paucity of GWA studies in individuals of African ancestry. We performed GWA studies in African American individuals from four cohorts (nâ=â6,247) to identify genetic variants associated with PR interval duration. Genotyping was performed using the Affymetrix 6.0 microarray. Imputation was performed for 2.8 million single nucleotide polymorphisms (SNPs) using combined YRI and CEU HapMap phase II panels. We observed a strong signal (rs3922844) within the gene encoding the cardiac sodium channel (SCN5A) with genome-wide significant association (p<2.5Ă10â8) in two of the four cohorts and in the meta-analysis. The signal explained 2% of PR interval variability in African Americans (beta â=â5.1 msec per minor allele, 95% CI â=â4.1â6.1, pâ=â3Ă10â23). This SNP was also associated with PR interval (betaâ=â2.4 msec per minor allele, 95% CIâ=â1.8â3.0, pâ=â3Ă10â16) in individuals of European ancestry (nâ=â14,042), but with a smaller effect size (p for heterogeneity <0.001) and variability explained (0.5%). Further meta-analysis of the four cohorts identified genome-wide significant associations with SNPs in SCN10A (rs6798015), MEIS1 (rs10865355), and TBX5 (rs7312625) that were highly correlated with SNPs identified in European and Asian GWA studies. African ancestry was associated with increased PR duration (13.3 msec, pâ=â0.009) in one but not the other three cohorts. Our findings demonstrate the relevance of common variants to African Americans at four loci previously associated with PR interval in European and Asian samples and identify an association signal at one of these loci that is more strongly associated with PR interval in African Americans than in Europeans
Fine-mapping, novel loci identification, and SNP association transferability in a genome-wide association study of QRS duration in African Americans
The electrocardiographic QRS duration, a measure of ventricular depolarization and conduction, is associated with cardiovascular mortality. While single nucleotide polymorphisms (SNPs) associated with QRS duration have been identified at 22 loci in populations of European descent, the genetic architecture of QRS duration in non-European populations is largely unknown. We therefore performed a genome-wide association study (GWAS) meta-analysis of QRS duration in 13,031 African Americans from ten cohorts and a transethnic GWAS meta-analysis with additional results from populations of European descent. In the African American GWAS, a single genome-wide significant SNP association was identified (rs3922844, P = 4 Ă 10â14) in intron 16 of SCN5A, a voltage-gated cardiac sodium channel gene. The QRS-prolonging rs3922844 C allele was also associated with decreased SCN5A RNA expression in human atrial tissue (P = 1.1 Ă 10â4). High density genotyping revealed that the SCN5A association region in African Americans was confined to intron 16. Transethnic GWAS meta-analysis identified novel SNP associations on chromosome 18 in MYL12A (rs1662342, P = 4.9 Ă 10â8) and chromosome 1 near CD1E and SPTA1 (rs7547997, P = 7.9 Ă 10â9). The 22 QRS loci previously identified in populations of European descent were enriched for significant SNP associations with QRS duration in African Americans (P = 9.9 Ă 10â7), and index SNP associations in or near SCN5A, SCN10A, CDKN1A, NFIA, HAND1, TBX5 and SETBP1 replicated in African Americans. In summary, rs3922844 was associated with QRS duration and SCN5A expression, two novel QRS loci were identified using transethnic meta-analysis, and a significant proportion of QRSâSNP associations discovered in populations of European descent were transferable to African Americans when adequate power was achieved
Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation
Atrial fibrillation affects more than 33 million people worldwide and increases the risk of stroke, heart failure, and death. Fourteen genetic loci have been associated with atrial fibrillation in European and Asian ancestry groups. To further define the genetic basis of atrial fibrillation, we performed large-scale, trans-ancestry meta-analyses of common and rare variant association studies. The genome-wide association studies (GWAS) included 17,931 individuals with atrial fibrillation and 115,142 referents; the exome-wide association studies (ExWAS) and rare variant association studies (RVAS) involved 22,346 cases and 132,086 referents. We identified 12 new genetic loci that exceeded genome-wide significance, implicating genes involved in cardiac electrical and structural remodeling. Our results nearly double the number of known genetic loci for atrial fibrillation, provide insights into the molecular basis of atrial fibrillation, and may facilitate the identification of new potential targets for drug discovery
- âŠ