35 research outputs found

    Emitter-site selective photoelectron circular dichroism of trifluoromethyloxirane

    Full text link
    The angle-resolved inner-shell photoionization of R-trifluoromethyloxirane, C3H3F3O, is studied experimentally and theoretically. Thereby, we investigate the photoelectron circular dichroism (PECD) for nearly-symmetric O 1s and F 1s electronic orbitals, which are localized on different molecular sites. The respective dichroic ÎČ1\beta_{1} and angular distribution ÎČ2\beta_{2} parameters are measured at the photoelectron kinetic energies from 1 to 16 eV by using variably polarized synchrotron radiation and velocity map imaging spectroscopy. The present experimental results are in good agreement with the outcome of ab initio electronic structure calculations. We report a sizable chiral asymmetry ÎČ1\beta_{1} of up to about 9% for the K-shell photoionization of oxygen atom. For the individual fluorine atoms, the present calculations predict asymmetries of similar size. However, being averaged over all fluorine atoms, it drops down to about 2%, as also observed in the present experiment. Our study demonstrates a strong emitter- and site-sensitivity of PECD in the one-photon inner-shell ionization of this chiral molecule

    Observation of Photoion Backward Emission in Photoionization of He and N2

    Full text link
    We experimentally investigate the effects of the linear photon momentum on the momentum distributions of photoions and photoelectrons generated in one-photon ionization in an energy range of 300 eV ≀ Eγ ≀\leq~E_\gamma~\leq 40 keV. Our results show that for each ionization event the photon momentum is imparted onto the photoion, which is essentially the system's center of mass. Nevertheless, the mean value of the ion momentum distribution along the light propagation direction is backward-directed by −3/5-3/5 times the photon momentum. These results experimentally confirm a 90 year old prediction.Comment: 5 pages, 3 figure

    Strong differential photoion circular dichroism in strong-field ionization of chiral molecules

    Get PDF
    We investigate the differential ionization probability of chiral molecules in the strong-field regime as a function of the helicity of the incident light. To this end, we analyze the fourfold ionization of bromochlorofluoromethane (CHBrClF) with subsequent fragmentation into four charged fragments and different dissociation channels of the singly ionized methyloxirane. By resolving for the molecular orientation, we show that the photoion circular dichroism signal strength is increased by 2 orders of magnitude

    Enantiosensitive Structure Determination by Photoelectron Scattering on Single Molecules

    Get PDF
    X-ray as well as electron diffraction are powerful tools for structure determination of molecules. Electron diffraction methods yield \r{A}ngstrom-resolution even when applied to large systems or systems involving weak scatterers such as hydrogen atoms. For cases in which molecular crystals cannot be obtained or the interaction-free molecular structure is to be addressed, corresponding electron scattering approaches on gas-phase molecules exist. Such studies on randomly oriented molecules, however, can only provide information on interatomic distances, which is challenging to analyse in case of overlapping distance parameters and they do not reveal the handedness of chiral systems8. Here, we present a novel scheme to obtain information on the structure, handedness and even detailed geometrical features of single molecules in the gas phase. Using a loop-like analysis scheme employing input from ab initio computations on the photoionization process, we are able to deduce the three dimensional molecular structure with sensitivity to the position individual atoms, as e.g. protons. To achieve this, we measure the molecular frame diffraction pattern of core-shell photoelectrons in combination with only two ionic fragments from a molecular Coulomb explosion. Our approach is expected to be suitable for larger molecules, as well, since typical size limitations regarding the structure determination by pure Coulomb explosion imaging are overcome by measuring in addition the photoelectron in coincidence with the ions. As the photoelectron interference pattern captures the molecular structure at the instant of ionization, we anticipate our approach to allow for tracking changes in the molecular structure on a femtosecond time scale by applying a pump-probe scheme in the future

    Trends in autoionization of Rydberg states converging to the 4s threshold in the Kr-Rbâș-SrÂČâș isoelectonic sequence: theory and experiment

    Get PDF
    We have measured the photoabsorption spectra of the Kr-like ions Rb+ and Sr2+ at photon energies corresponding to the excitation of 4s-np resonances using, the dual laser plasma photoabsorption technique. Dramatic changes in the line profiles, with increasing ionization and also proceeding along the Rydberg series of each ion, are observed and explained by the trends in 4s-transition amplitudes computed within a framework of configuration-interaction Pauli-Fock calculations. Total photoionization cross sections show very good agreement with relative absorption data extracted from the measured spectra

    Single center method: A computational tool for ionization and electronic excitation studies of molecules

    No full text
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugÀnglich. - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively
    corecore