19 research outputs found
A New Mixed-Backbone Oligonucleotide against Glucosylceramide Synthase Sensitizes Multidrug-Resistant Tumors to Apoptosis
Enhanced ceramide glycosylation catalyzed by glucosylceramide synthase (GCS) limits therapeutic efficiencies of antineoplastic agents including doxorubicin in drug-resistant cancer cells. Aimed to determine the role of GCS in tumor response to chemotherapy, a new mixed-backbone oligonucleotide (MBO-asGCS) with higher stability and efficiency has been generated to silence human GCS gene. MBO-asGCS was taken up efficiently in both drug-sensitive and drug-resistant cells, but it selectively suppressed GCS overexpression, and sensitized drug-resistant cells. MBO-asGCS increased doxorubicin sensitivity by 83-fold in human NCI/ADR-RES, and 43-fold in murine EMT6/AR1 breast cancer cells, respectively. In tumor-bearing mice, MBO-asGCS treatment dramatically inhibited the growth of multidrug-resistant NCI/ADR-RE tumors, decreasing tumor volume to 37%, as compared with scrambled control. Furthermore, MBO-asGCS sensitized multidrug-resistant tumors to chemotherapy, increasing doxorubicin efficiency greater than 2-fold. The sensitization effects of MBO-asGCS relied on the decreases of gene expression and enzyme activity of GCS, and on the increases of C18-ceramide and of caspase-executed apoptosis. MBO-asGCS was accumulation in tumor xenografts was greater in other tissues, excepting liver and kidneys; but MBO-asGCS did not exert significant toxic effects on liver and kidneys. This study, for the first time in vivo, has demonstrated that GCS is a promising therapeutic target for cancer drug resistance, and MBO-asGCS has the potential to be developed as an antineoplastic agent
Therapeutic Potential of Hemoglobin Derived from the Marine Worm Arenicola marina (M101): A Literature Review of a Breakthrough Innovation
International audienceOxygen (O 2) is indispensable for aerobic respiration and cellular metabolism. In case of injury, reactive oxygen species are produced, causing oxidative stress, which triggers cell damaging chemical mediators leading to ischemic reperfusion injuries (IRI). Sufficient tissue oxygenation is necessary for optimal wound healing. In this context, several hemoglobin-based oxygen carriers have been developed and tested, especially as graft preservatives for transplant procedures. However, most of the commercially available O 2 carriers increase oxidative stress and show some adverse effects. Interestingly, the hemoglobin derived from the marine lugworm Arenicola marina (M101) has been presented as an efficient therapeutic O 2 carrier with potential anti-inflammatory, antibacterial, and antioxidant properties. Furthermore, it has demonstrated promise as a supplement to conventional organ preservatives by reducing IRI. This review summarizes the properties and various applications of M101. M101 is an innovative oxygen carrier with several beneficial therapeutic properties, and further research must be carried out to determine its efficacy in the management of different pathologies
Increased B cell proliferation and reduced Ig production in DREAM transgenic mice.
International audienceDREAM/KChIP-3 is a calcium-dependent transcriptional repressor highly expressed in immune cells. Transgenic mice expressing a dominant active DREAM mutant show reduced serum Ig levels. In vitro assays show that reduced Ig secretion is an intrinsic defect of transgenic B cells that occurs without impairment in plasma cell differentiation, class switch recombination, or Ig transcription. Surprisingly, transgenic B cells show an accelerated entry in cell division. Transcriptomic analysis of transgenic B cells revealed that hyperproliferative B cell response could be correlated with a reduced expression of Klf9, a cell-cycle regulator. Pulse-chase experiments demonstrated that the defect in Ig production is associated with reduced translation rather than with increased protein degradation. Importantly, transgenic B cells showed reduced expression of the Eif4g3 gene, which encodes a protein related to protein translation. Our results disclose, to our knowledge, a novel function of DREAM in proliferation and Ig synthesis in B lymphocytes
A therapeutic oxygen carrier isolated from Arenicola marina decreases amanitin-induced hepatotoxicity
International audienceThe amanitins (namely α- and β-amanitin) contained in certain mushrooms are bicyclic octapeptides that, when ingested, are responsible for potentially lethal hepatotoxicity. M101 is an extracellular hemoglobin extracted from the marine worm Arenicola marina. It has intrinsic Cu/Zn-SOD-like activity and is currently used as an oxygen carrier in organ preservation solutions. Our present results suggest that M101 might be effective in reducing amanitin-induced hepatotoxicity and may have potential for therapeutic development
Adding the oxygen carrier M101 to a cold-storage solution could be an alternative to HOPE for liver graft preservation
International audienceBackground & aims - Hypothermic oxygenated machine perfusion (HOPE) is a promising technique for providing oxygen to the liver during graft preservation; however, because of associated logistical constraints, addition of an oxygen transporter to static cold-storage solutions (SCS) might be easier. M101 is marine worm haemoglobin that has been shown to improve kidney preservation in the clinic when added to SCS. This study evaluated the effects of the addition of M101 to SCS on the quality of pig liver graft preservation. Methods - Pig liver grafts were preserved using SCS, HOPE, or SCS+M101, and the liver functions were compared during cold preservation and after orthotopic allotransplantation (OLT) in pigs. Results - During preservation of the liver grafts, mitochondrial function, ATP synthesis, antioxidant capacities, and hepatocyte architecture were better preserved, and free radical production, antioxidant activities, and inflammatory mediators were lower, with HOPE or SCS+M101 than with SCS alone. However, after 1 h of preservation, liver functions with HOPE were superior to those with SCS+M101. After 6 h of preservation and OLT, blood levels of aspartate and alanine aminotransferases and lactate dehydrogenase increased with a peak effect at Day 1 post-transplant; values were similar with HOPE and SCS+M101, and were significantly lower than those in the SCS group. At Days 1 and 3, tumor necrosis factor α levels remained lower with HOPE and SCS+M101 SCS. At Day 7, liver cell necrosis and inflammation were less marked in both oxygenated groups. Conclusions - When added to SCS, M101 effectively oxygenates liver grafts during preservation, preventing post-transplant injury; although graft performances are below those achieved with HOPE. Lay summary - When transported between donors and recipients, even cold-stored liver grafts need oxygen to maintain their viability. To provide them with oxygen, we added a marine worm super haemoglobin (M101) to the cold-storage solution UWCS. Using a pig liver transplant model, we revealed that livers cold stored with UWCS+M101 showed improved oxygenation compared with simple cold-storage solutions, but did not reach the oxygenation level achieved with machine perfusion
A novel oxygen carrier (M101) attenuates ischemia-reperfusion injuries during static cold storage in steatotic livers
The combined impact of an increasing demand for liver transplantation and a growing incidence of nonalcoholic liver disease has provided the impetus for the development of innovative strategies to preserve steatotic livers. A natural oxygen carrier, HEMO2life®, which contains M101 that is extracted from a marine invertebrate, has been used for static cold storage (SCS) and has shown superior results in organ preservation. A total of 36 livers were procured from obese Zucker rats and randomly divided into three groups, i.e., control, SCS-24H and SCS-24H + M101 (M101 at 1 g/L), mimicking the gold standard of organ preservation. Ex situ machine perfusion for 2 h was used to evaluate the quality of the livers. Perfusates were sampled for functional assessment, biochemical analysis and subsequent biopsies were performed for assessment of ischemia-reperfusion markers. Transaminases, GDH and lactate levels at the end of reperfusion were significantly lower in the group preserved with M101 (p < 0.05). Protection from reactive oxygen species (low MDA and higher production of NO2-NO3) and less inflammation (HMGB1) were also observed in this group (p < 0.05). Bcl-1 and caspase-3 were higher in the SCS-24H group (p < 0.05) and presented more histological damage than those preserved with HEMO2life®. These data demonstrate, for the first time, that the addition of HEMO2life® to the preservation solution significantly protects steatotic livers during SCS by decreasing reperfusion injury and improving graft function
AID-Driven Deletion Causes Immunoglobulin Heavy Chain "Locus Suicide Recombination" in B Cells.
International audienceRemodeling of immunoglobulin genes by activation-induced deaminase (AID) is required for affinity maturation and class switch recombination in mature B lymphocytes. In the immunoglobulin heavy chain locus, these processes are predominantly controlled by the 3' cis-regulatory region. We now show that this region is transcribed and undergoes AID-mediated mutation and recombination around phylogenetically conserved switch-like DNA repeats. Such recombination, which we term "locus suicide recombination," deletes the whole constant region gene cluster and thus stops expression of the immunoglobulin of the B cell surface, which is critical for B cell survival. The frequency of this event is approaching that of class switching and makes it a potential regulator of B cell homeostasis
Efficacy of the natural oxygen transporter HEMO 2 life ® in cold preservation in a preclinical porcine model of donation after cardiac death
International audienceThe growing use of marginal organs for transplantation pushes current preservation methods toward their limits, and the need for improvement is pressing. We previously demonstrated the benefits of M101, a natural extracellular oxygen carrier compatible with hypothermia, for the preservation of healthy renal grafts in a porcine model of autotransplantation. Herein, we use a variant of this preclinical model to evaluate M101 potential benefits both in static cold storage (CS) and in machine perfusion (MP) preservation in the transplantation outcomes for marginal kidneys. In the CS arm, despite the absence of obvious benefits within the first 2 weeks of follow-up, M101 dose-dependently improved long-term function, normalizing creatininemia after 1 and 3 months. In the MP arm, M101 improved short- and long-term functional outcomes as well as tissue integrity. Importantly, we provide evidence for the additivity of MP and M101 functional effects, showing that the addition of the compound further improves organ preservation, by reducing short-term function loss, with no loss of function or tissue integrity recorded throughout the follow-up. Extending previous observations with healthy kidneys, the present results point at the M101 oxygen carrier as a viable strategy to improve current organ preservation methods in marginal organ transplantation