14 research outputs found

    Remote sensing for the observation of senescence in Conference pear trees

    Get PDF
    Leaf senescence in trees is the phenological stage during which nutrient resorption happens. In this process, part of the nutrients is transferred to the perennial organs of the plant, contributing to tree vitality and, in pome fruit trees, to flowering intensity the following year. Another share of the nutrients remains inside leaf litter and enters the agroecosystem’s nutrient cycles. The timing and duration of leaf senescence influences the ratio between the two parts of nutrients and thus influences nutrient cycles in the agroecosystem. Among innovative techniques to investigate these processes, satellite remote sensing has proved a valid tool in natural ecosystems. The same cannot be said about fruit orchards, because of the image quality of the satellites active before Sentinel-2, often deemed insufficient for agricultural studies. The features of Sentinel-2, instead, offer new possibilities for monitoring phenology in agricultural environments. This research aims to study senescence in Conference pear trees, in three regions of Flanders (Belgium). One cloud-free Sentinel-2 image, acquired in the middle of the senescence period, was analysed, by means of different spectral indices. Ground data was collected through a network of 34 webcams with an RGB camera. A visual analysis was performed, to determine the beginning of senescence (the moment in which the first yellow/red leaves appear in the canopy) and the end of senescence (the moment in which the entire canopy turns yellow/red). Webcam data showed that leaf (dis)colouration started between September and October, during a one-month time span. Full discolouration of the canopy, occurring at the end of November, was instead more synchronous. Moreover, some trees only turned yellow, while others showed red leaves, probably a stress indicator. Sentinel-2 data revealed that spectral indices correlate well with the date of the beginning of senescence, thus suggesting that it would possible to map it. These results already offer evidence that monitoring variability in the dynamics of senescence is possible from satellite remote sensing. Current focus is on the link between canopy colour, as it appears in the webcam imagery, and satellite data

    Multitemporal Chlorophyll Mapping in Pome Fruit Orchards from Remotely Piloted Aircraft Systems

    No full text
    Early and precise spatio-temporal monitoring of tree vitality is key for steering management decisions in pome fruit orchards. Spaceborne remote sensing instruments face a tradeoff between spatial and spectral resolution, while manned aircraft sensor-platform systems are very expensive. In order to address the shortcomings of these platforms, this study investigates the potential of Remotely Piloted Aircraft Systems (RPAS) to facilitate rapid, low cost, and flexible chlorophyll monitoring. Due to the complexity of orchard scenery a robust chlorophyll retrieval model on RPAS level has not yet been developed. In this study, specific focus therefore lies on evaluating the sensitivity of retrieval models to confounding factors. For this study, multispectral and hyperspectral imagery was collected over pome fruit orchards. Sensitivities of both univariate and multivariate retrieval models were demonstrated under different species, phenology, shade, and illumination scenes. Results illustrate that multivariate models have a significantly higher accuracy than univariate models as the former provide accuracies for the canopy chlorophyll content retrieval of R2 = 0.80 and Relative Root Mean Square Error (RRMSE) = 12% for the hyperspectral sensor. Random forest regression on multispectral imagery (R2 > 0.9 for May, June, July, and August, and R2 = 0.5 for October) and hyperspectral imagery (0.6 < R2 < 0.9) led to satisfactory high and consistent accuracies for all months.status: Published onlin

    Multitemporal Chlorophyll Mapping in Pome Fruit Orchards from Remotely Piloted Aircraft Systems

    No full text
    Early and precise spatio-temporal monitoring of tree vitality is key for steering management decisions in pome fruit orchards. Spaceborne remote sensing instruments face a tradeoff between spatial and spectral resolution, while manned aircraft sensor-platform systems are very expensive. In order to address the shortcomings of these platforms, this study investigates the potential of Remotely Piloted Aircraft Systems (RPAS) to facilitate rapid, low cost, and flexible chlorophyll monitoring. Due to the complexity of orchard scenery a robust chlorophyll retrieval model on RPAS level has not yet been developed. In this study, specific focus therefore lies on evaluating the sensitivity of retrieval models to confounding factors. For this study, multispectral and hyperspectral imagery was collected over pome fruit orchards. Sensitivities of both univariate and multivariate retrieval models were demonstrated under different species, phenology, shade, and illumination scenes. Results illustrate that multivariate models have a significantly higher accuracy than univariate models as the former provide accuracies for the canopy chlorophyll content retrieval of R2 = 0.80 and Relative Root Mean Square Error (RRMSE) = 12% for the hyperspectral sensor. Random forest regression on multispectral imagery (R2 &gt; 0.9 for May, June, July, and August, and R2 = 0.5 for October) and hyperspectral imagery (0.6 &lt; R2 &lt; 0.9) led to satisfactory high and consistent accuracies for all months

    Red Palm Weevil Detection in Date Palm Using Temporal UAV Imagery

    No full text
    Red palm weevil (RPW) is widely considered a key pest of palms, creating extensive damages to the date palm trunk that inevitably leads to palm death if no pest eradication is done. This study evaluates the potential of a remote sensing approach for the timely and reliable detection of RPW infestation on the palm canopy. For two consecutive years, an experimental field with infested and control palms was regularly monitored by an Unmanned Aerial Vehicle (UAV) carrying RGB, multispectral, and thermal sensors. Simultaneously, detailed visual observations of the RPW effects on the palms were made to assess the evolution of infestation from the initial stage until palm death. A UAV-based image processing chain for nondestructive RPW detection was built based on segmentation and vegetation index analysis techniques. These algorithms reveal the potential of thermal data to detect RPW infestation. Maximum temperature values and standard deviations within the palm crown revealed a significant (α = 0.05) difference between infested and non-infested palms at a severe infestation stage but before any visual canopy symptoms were noticed. Furthermore, this proof-of-concept study showed that the temporal monitoring of spectral vegetation index values could contribute to the detection of infested palms before canopy symptoms are visible. The seasonal significant (α = 0.05) increase of greenness index values, as observed in non-infested trees, could not be observed in infested palms. These findings are of added value for steering management practices and future related studies, but further validation of the results is needed. The workflow and resulting maps are accessible through the Mapeo® visualization platform

    Hyperspectral Reflectance and Fluorescence Imaging to Detect Scab Induced Stress in Apple Leaves

    No full text
    Apple scab causes significant losses in the production of this fruit. A timely and more site-specific monitoring and spraying of the disease could reduce the number of applications of fungicides in the fruit industry. The aim of this leaf-scale study therefore lies in the early detection of apple scab infections in a non-invasive and non-destructive way. In order to attain this objective, fluorescence- and hyperspectral imaging techniques were used. An experiment was conducted under controlled environmental conditions, linking hyperspectral reflectance and fluorescence imaging measurements to scab infection symptoms in a susceptible apple cultivar (Malus x domestica Borkh. cv. Braeburn). Plant stress was induced by inoculation of the apple plants with scab spores. The quantum efficiency of Photosystem II (PSII) photochemistry was derived from fluorescence images of leaves under light adapted conditions. Leaves inoculated with scab spores were expected to have lower PSII quantum efficiency than control (mock) leaves. However, besides scab-induced, also immature leaves exhibited low PSII quantum efficiency. Therefore, this study recommends the simultaneous use of fluorescence imaging and hyperspectral techniques. A shortwave infrared narrow-waveband ratio index (R1480/R2135) is presented in this paper as a promising tool to identify scab stress before symptoms become visible to the naked eye. Low PSII quantum efficiency attended by low narrow waveband R1480/R2135 index values points out scab stress in an early stage. Apparent high PSII quantum efficiency together with high overall reflectance in VIS and SWIR spectral domains indicate a severe, well-developed scab infection

    Habitat mapping and quality assessment of NATURA 2000 heathland using airborne imaging spectroscopy

    No full text
    Appropriate management of (semi-)natural areas requires detailed knowledge of the ecosystems present and their status. Remote sensing can provide a systematic, synoptic view at regular time intervals, and is therefore often suggested as a powerful tool to assist with the mapping and monitoring of protected habitats and vegetation. In this study, we present a multi-step mapping framework that enables detailed NATURA 2000 (N2000) heathland habitat patch mapping and the assessment of their conservation status at patch level. The method comprises three consecutive steps: (1) a hierarchical land/vegetation type (LVT) classification using airborne AHS imaging spectroscopy and field reference data; (2) a spatial re-classification to convert the LVT map to a patch map based on life forms; and (3) identification of the N2000 habitat type and conservation status parameters for each of the patches. Based on a multivariate analysis of 1325 vegetation reference plots acquired in 2006-2007, 24 LVT classes were identified that were considered relevant for the assessment of heathland conservation status. These labelled data were then used as ground reference for the supervised classification of the AHS image data to an LVT classification map, using Linear Discriminant Analysis in combination with Sequential-Floating-Forward-Search feature selection. Overall classification accuracies for the LVT mapping varied from 83% to 92% (Kappa ≈ 0.82-0.91), depending on the level of detail in the hierarchical classification. After converting the LVT map to a N2000 habitat type patch map, an overall accuracy of 89% was obtained. By combining the N2000 habitat type patch map with the LVT map, two important conservation status parameters were directly deduced per patch: tree and shrub cover, and grass cover, showing a strong similarity to an independent dataset with estimates made in the field in 2009. The results of this study indicate the potential of imaging spectroscopy for detailed heathland habitat characterization of N2000 sites in a way that matches the current field-based workflows of the user
    corecore