141 research outputs found
Calculation of intensity of high energy muon groups observed deep underground
The intensity of narrow muon groups observed in Kolar Gold Field (KGF) at the depth of 3375 m.w.e. was calculated in terms of quark-gluon strings model for high energy hadron - air nuclei interactions by the method of direct modeling of nuclear cascade in the air and muon propagation in the ground for normal primary cosmic ray composition. The calculated intensity has been found to be approx. 10 to the 4 times less than one observed experimentally
Lorentz and CPT Invariance Violation In High-Energy Neutrinos
High-energy neutrino astronomy will be capable of observing particles at both
extremely high energies and over extremely long baselines. These features make
such experiments highly sensitive to the effects of CPT and Lorentz violation.
In this article, we review the theoretical foundation and motivation for CPT
and Lorentz violating effects, and then go on to discuss the related
phenomenology within the neutrino sector. We describe several signatures which
might be used to identify the presence of CPT or Lorentz violation in next
generation neutrino telescopes and cosmic ray experiments. In many cases,
high-energy neutrino experiments can test for CPT and Lorentz violation effects
with much greater precision than other techniques.Comment: 27 pages, 8 figure
Predictions for the Cosmogenic Neutrino Flux in Light of New Data from the Pierre Auger Observatory
The Pierre Auger Observatory (PAO) has measured the spectrum and composition
of the ultrahigh energy cosmic rays with unprecedented precision. We use these
measurements to constrain their spectrum and composition as injected from their
sources and, in turn, use these results to estimate the spectrum of cosmogenic
neutrinos generated in their propagation through intergalactic space. We find
that the PAO measurements can be well fit if the injected cosmic rays consist
entirely of nuclei with masses in the intermediate (C, N, O) to heavy (Fe, Si)
range. A mixture of protons and heavier species is also acceptable but (on the
basis of existing hadronic interaction models) injection of pure light nuclei
(p, He) results in unacceptable fits to the new elongation rate data. The
expected spectrum of cosmogenic neutrinos can vary considerably, depending on
the precise spectrum and chemical composition injected from the cosmic ray
sources. In the models where heavy nuclei dominate the cosmic ray spectrum and
few dissociated protons exceed GZK energies, the cosmogenic neutrino flux can
be suppressed by up to two orders of magnitude relative to the all-proton
prediction, making its detection beyond the reach of current and planned
neutrino telescopes. Other models consistent with the data, however, are
proton-dominated with only a small (1-10%) admixture of heavy nuclei and
predict an associated cosmogenic flux within the reach of upcoming experiments.
Thus a detection or non-detection of cosmogenic neutrinos can assist in
discriminating between these possibilities.Comment: 10 pages, 7 figure
Lateral distribution on charged particles in EAS
Lateral distribution of charged particles which allow for the finiteness of energy gamma-quanta, the inhomogeneity of the atmosphere and the experimental selection of EAS are needed to interpret experimental data. The effects of finiteness of energy of gamma-quanta which produce the partial electron-photon cascades were considered by substituting K R sub m instead of R sub m in NKG approximation where K was found to be 0.56 from comparison with the experimental data. New results on the lateral distribution of electrons in the partial cascades from gamma-quanta were obtained. It is shown that the coefficient K can be regarded as a constant. The last approximation of K was found to be most adequate when compared with the experimental data. The inhomogeneity of the atmosphere, muons and experimental selection are considered. The calculation of Ne are extended from 100,000 to 10 million for sea level and for Akeno level
The maximum depth of shower with E sub 0 larger than 10(17) eV on average characteristics of EAS different components
The extensive air shower (EAS) development model independent method of the determination of a maximum depth of shower (X sub m) is considered. X sub m values obtained on various EAS parameters are in a good agreement
- …