14 research outputs found

    Simulation of the Two-Phase Flow Hydrodynamics in an IRDE Reactor

    No full text
    Many industrial processes deal with gas bubbles, e.g. the chlor-alkali processes or a side reaction in metal deposition reactions. It is therefore very important to describe the influence of gas bubbles on the fluid flow in a quantitative way. In the present paper, the two-phase flow is both experimentally characterized and numerically modeled in a reactor with a rotating flow field such as the inverted rotating disk electrode (IRDE). Polarization curves of the hydrogen evolution in 0.1 M Na2SO4 at pH 2.5 are recorded at different rotation speeds. The bubble dispersion and size distribution of the hydrogen bubbles are determined by laser marked shadowgraphy and interferometric laser imaging for droplet sizing. Concerning the numerical investigations, in the first step the single-phase flow solution in the vicinity of the IRDE is compared to the analytical solution of the flow field, as proposed by Cochran [Proc. Cambridge Philos. Soc. 30, 365 (1934)]. In the following step, an Eulerian–Lagrangian two-phase flow model is used to track the bubbles. Two-way momentum coupling effects between bubbles and electrolyte flow are taken into account. The calculated two-phase flow field compares well against the experimental data of the two-phase flow field obtained from the optical imaging techniques.info:eu-repo/semantics/publishe

    Beyond Theory: Experimental Results of a Self-Learning Air Conditioning Unit

    No full text
    © 2016 IEEE. This paper demonstrates the application of a data-driven approach, based on fitted Q-iteration, in a living lab with an air conditioning unit and a photovoltaic system. More specifically, the objective is to minimize the quadratic difference between the locally produced photovoltaic power and the power consumption of the air conditioning unit. A first simulation-based experiment assesses the performance of the data-driven approach by comparing its performance with the default thermostat and a model-based method. The simulation-based results indicate that the data-driven control method was able to achieve near-optimal policies within approximately 15 days of operation. In a second experiment, the proposed control method is applied to a living lab. The qualitative results indicate that the control method was able to successfully reduce the peak power of the photovoltaic system that is injected into the grid.status: publishe

    Modelling the spatial colour distribution of phosphor-white high power light-emitting diodes

    No full text
    In contrast to the spatial (luminous) intensity distribution of high power light-emitting diodes (LEDs), little effort has been made to examine the spatial colour distribution of these light sources, i.e. the values of CIE colour coordinates as a function of direction in space. The spatial colour variation is negligible for single colour emitters, but this is not the case for bichromatic white LEDs using phosphor for wavelength conversion. As the latter diode types are most often used for high colour rendering applications, a quantitative description of their colour distribution is necessary. Therefore, photogoniometer measurements have been performed on a variety of white light-emitting diodes incorporating a planar (remote) phosphor. In this paper measurement results are used to discuss and model the spatial colour distribution of phosphor-white LEDs. Such LEDs appear to show an intrinsic and inevitable spatial colour variation. Furthermore, the measurement data and constructed model allow evaluating the visibility of spatial colour differences and the relevance of colour binning measurements at the end of LED package production lines. Using insights on spatial colour distribution gathered throughout this paper, a design proposal is made to vastly decrease the colour variation of phosphor-white LEDs. © 2010 SPIE.status: publishe

    The Friend of GATA proteins U-shaped, FOG-1, and FOG-2 function as negative regulators of blood, heart, and eye development in Drosophila

    No full text
    Friend of GATA (FOG) proteins regulate GATA factor-activated gene transcription. During vertebrate hematopoiesis, FOG and GATA proteins cooperate to promote erythrocyte and megakaryocyte differentiation. The Drosophila FOG homologue U-shaped (Ush) is expressed similarly in the blood cell anlage during embryogenesis. During hematopoiesis, the acute myeloid leukemia 1 homologue Lozenge and Glial cells missing are required for the production of crystal cells and plasmatocytes, respectively. However, additional factors have been predicted to control crystal cell proliferation. In this report, we show that Ush is expressed in hemocyte precursors and plasmatocytes throughout embryogenesis and larval development, and the GATA factor Serpent is essential for Ush embryonic expression. Furthermore, loss of ush function results in an overproduction of crystal cells, whereas forced expression of Ush reduces this cell population. Murine FOG-1 and FOG-2 also can repress crystal cell production, but a mutant version of FOG-2 lacking a conserved motif that binds the corepressor C-terminal binding protein fails to affect the cell lineage. The GATA factor Pannier (Pnr) is required for eye and heart development in Drosophila. When Ush, FOG-1, FOG-2, or mutant FOG-2 is coexpressed with Pnr during these developmental processes, severe eye and heart phenotypes result, consistent with a conserved negative regulation of Pnr function. These results indicate that the fly and mouse FOG proteins function similarly in three distinct cellular contexts in Drosophila, but may use different mechanisms to regulate genetic events in blood vs. cardial or eye cell lineages
    corecore