1,177 research outputs found

    Horizontal branch stars, and galactic and magellanic cloud globular clusters

    Get PDF
    Seven blue horizontal branch stars in the field were observed and a few HB stars were isolated in globular clusters. Energy distributions are compared to assess possible differences and also used in comparison with model atmospheres. Observed energy distributions of HB stars in NGC 6397 are used to estimate the total number of HB stars which produced the integrated fluxes as observed by ANS. Preliminary results are given for colors of globular clusters observed in the Magellanic Clouds and for their extent, based on the Washburn IUE extraction

    Ultraviolet absorption by interstellar gas at large distances from the galactic plane

    Get PDF
    Eighteen high dispersion International Ultraviolet Exploration spectra of 6 stars in the large magellanic cloud (LMC) 3 stars in the small magellanic cloud (SMC) and 2 foreground stars were studied. Fourteen spectra cover the wavelengths lambda 1150-2000 A and 4 cover lambda 1900-3200 A. All the Magellanic Cloud star spectra exhibit exceedingly strong interstellar absorption lines due to a wide range of ionization stages at galactic velocities and at velocities associated with the LMC or SMC. The analysis is restricted to the Milky Way absorption features. Toward the LMC stars, the strong interstellar lines have a positive velocity extension, which exceeds the extension recorded toward the SMC stars. The most straightforward interpretation of these velocity extensions is obtained by assuming that gas at large distances away from the plane of the galaxy participates in the rotation of the galaxy as found in the galactic disk

    Washburn extraction and width of the IUE point spread function

    Get PDF
    The Washburn Extraction Routine for low dispersion IUE spectra was reviewed. The shape of the point spread function (PSF) in low dispersion spectra is sufficiently well described by a gaussian function. The PSF is in large and small aperture essentially identical and values of sigma are presented. Several advantages of the extraction routine are mentioned

    Report of the QCD Working Group

    Get PDF
    The activities of the QCD working group concentrated on improving the understanding and Monte Carlo simulation of multi-jet final states due to hard QCD processes at LEP, i.e. quark-antiquark plus multi-gluon and/or secondary quark production, with particular emphasis on four-jet final states and b-quark mass effects. Specific topics covered are: relevant developments in the main event generators PYTHIA, HERWIG and ARIADNE; the new multi-jet generator APACIC++; description and tuning of inclusive (all-flavour) jet rates; quark mass effects in the three- and four-jet rates; mass, higher-order and hadronization effects in four-jet angular and shape distributions; b-quark fragmentation and gluon splitting into b-quarks.Comment: 95 pages, 48 figures, contribution to Proceedings of the LEP2 Monte Carlo Workshop. References for NLO 4-jet matrix elements adde

    The first direct measurement of ¹²C (¹²C,n) ²³Mg at stellar energies

    Get PDF
    Neutrons produced by the carbon fusion reaction ¹²C(¹²C,n)²³Mg play an important role in stellar nucleosynthesis. However, past studies have shown large discrepancies between experimental data and theory, leading to an uncertain cross section extrapolation at astrophysical energies. We present the first direct measurement that extends deep into the astrophysical energy range along with a new and improved extrapolation technique based on experimental data from the mirror reaction ¹²C(¹²C,p)²³Na. The new reaction rate has been determined with a well-defined uncertainty that exceeds the precision required by astrophysics models. Using our constrained rate, we find that ¹²C(¹²C,n)²³Mg is crucial to the production of Na and Al in Pop-III Pair Instability Supernovae. It also plays a non-negligible role in the production of weak s-process elements as well as in the production of the important galacti

    Probing astrophysically important states in the ²⁶Mg nucleus to study neutron sources for the s process

    Get PDF
    Background: The ²²Ne(α,n) ²⁵Mg reaction is the dominant neutron source for the slow neutron capture process (s process) in massive stars, and contributes, together with C¹³(α,n)O¹⁶, to the production of neutrons for the s process in asymptotic giant branch (AGB) stars. However, the reaction is endothermic and competes directly with ²²Ne(α,γ)²⁶Mg radiative capture. The uncertainties for both reactions are large owing to the uncertainty in the level structure of ²⁶Mg near the α and neutron separation energies. These uncertainties affect the s-process nucleosynthesis calculations in theoretical stellar models. Purpose: Indirect studies in the past have been successful in determining the energies and the γ-ray and neutron widths of the Mg26 states in the energy region of interest. But, the high Coulomb barrier hinders a direct measurement of the resonance strengths, which are determined by the α widths for these states. The goal of the present experiments is to identify the critical resonance states and to precisely measure the α widths by α-transfer techniques. Methods: The α-inelastic scattering and α-transfer measurements were performed on a solid ²⁶Mg target and a ²²Ne gas target, respectively, using the Grand Raiden Spectrometer at the Research Center for Nuclear Physics in Osaka, Japan. The (α,α′) measurements were performed at 0.45°, 4.1°, 8.6°, and 11.1° and the (⁶Li,d) measurements at 0° and 10°. The scattered α particles and deuterons were detected by the focal plane detection system consisting of multiwire drift chambers and plastic scintillators. The focal plane energy calibration allowed the study of ²⁶Mg levels from Eₓ = 7.69–12.06 MeV in the (α,α′) measurement and Eₓ = 7.36–11.32 MeV in the (⁶Li,d) measurement. Results: Six levels (Eₓ = 10717, 10822, 10951, 11085, 11167, and 11317 keV) were observed above the α threshold in the region of interest (10.61–11.32 MeV). The α widths were calculated for these states from the experimental data. The results were used to determine the α-capture induced reaction rates. Conclusion: The energy range above the α threshold in ²⁶Mg was investigated using a high resolution spectrometer. A number of states were observed for the first time in α-scattering and α-transfer reactions. The excitation energies and spin-parities were determined. Good agreement is observed for previously known levels in ²⁶Mg. From the observed resonance levels the Eₓ = 10717 keV state has a negligible contribution to the α-induced reaction rates. The rates are dominated in both reaction channels by the resonance contributions of the states at Ex = 10951, 11167, and 11317 keV. The Eₓ = 11167 keV state has the most appreciable impact on the (α,γ) rate and therefore plays an important role in the prediction of the neutron production in s-process environments

    On the uniqueness and global dynamics of AdS spacetimes

    Get PDF
    We study global aspects of complete, non-singular asymptotically locally AdS spacetimes solving the vacuum Einstein equations whose conformal infinity is an arbitrary globally stationary spacetime. It is proved that any such solution which is asymptotically stationary to the past and future is itself globally stationary. This gives certain rigidity or uniqueness results for exact AdS and related spacetimes.Comment: 18pp, significant revision of v

    Measurements of proton induced reaction cross sections on 120Te for the astrophysical p-process

    Full text link
    The total cross sections for the 120Te(p,gamma)121I and 120Te(p,n)120I reactions have been measured by the activation method in the effective center-of-mass energies between 2.47 MeV and 7.93 MeV. The targets were prepared by evaporation of 99.4 % isotopically enriched 120Te on Aluminum and Carbon backing foils, and bombarded with proton beams provided by the FN tandem accelerator at the University of Notre Dame. The cross sections and SS factors were deduced from the observed gamma ray activity, which was detected off-line by two Clover HPGe detectors mounted in close geometry. The results are presented and compared with the predictions of statistical model calculations using the codes NON-SMOKER and TALYS.Comment: 17 pages, 5 figures, 5 tables, regular articl

    Technologies of sleep research

    Get PDF
    Sleep is investigated in many different ways, many different species and under many different circumstances. Modern sleep research is a multidisciplinary venture. Therefore, this review cannot give a complete overview of all techniques used in sleep research and sleep medicine. What it will try to do is to give an overview of widely applied techniques and exciting new developments. Electroencephalography has been the backbone of sleep research and sleep medicine since its first application in the 1930s. The electroencephalogram is still used but now combined with many different techniques monitoring body and brain temperature, changes in brain and blood chemistry, or changes in brain functioning. Animal research has been very important for progress in sleep research and sleep medicine. It provides opportunities to investigate the sleeping brain in ways not possible in healthy volunteers. Progress in genomics has brought new insights in sleep regulation, the best example being the discovery of hypocretin/orexin deficiency as the cause of narcolepsy. Gene manipulation holds great promise for the future since it is possible not only to investigate the functions of different genes under normal conditions, but also to mimic human pathology in much greater detail
    corecore