74 research outputs found

    Galactic Evolution Of D And 3He Including Stellar Production Of 3He

    Get PDF
    New stellar models which track the production and destruction of 3^3He (and D) have been evolved for a range of stellar masses (0.65≤M/M⊙≤100)(0.65\leq M/M_{\odot}\leq 100), metallicities (0.01≤Z/Z⊙≤1)(0.01 \leq Z/Z_{\odot} \leq 1) and initial (main sequence) 3^3He mass fractions (10−5≤X3,MS≤10−3)(10^{-5} \leq X_{3,MS} \leq 10^{-3}). Armed with the 3^3He yields from these stellar models we have followed the evolution of D and 3^3He using a variety of chemical evolution models with and without infall of primordial or processed material. Production of new 3^3He by the lower mass stars overwhelms any reasonable primordial contributions and leads to predicted abundances in the presolar nebula and/or the present interstellar medium in excess of the observationally inferred values. This result, which obtains even for zero primordial D and 3^3He, and was anticipated by Rood, Steigman \& Tinsley (1976), is insensitive to the choice of chemical evolution model; it is driven by the large 3^3He yields from low mass stars. In an attempt to ameliorate this problem we have considered a number of non-standard models in which the yields from low mass stars have been modified. Although several of these non-standard models may be consistent with the 3^3He data, they may be inconsistent with observations of 12^{12}C/13^{13}C, 18^{18}O and, most seriously, the super-3^3He rich planetary nebulae (Rood, Bania \& Wilson 1992). Even using the most extreme of these non-standard models (Hogan 1995), we obtain a generous upper bound to pre-galactic 3^3He: X3P≤3.2×10−5_{3P} \leq 3.2 \times10^{-5} which, nonetheless, leads to a stringent lower bound to the universal density of nucleons.Comment: 21 pages, plus 10 figures, accepted by Ap

    Compulsory Deep Mixing of 3He and CNO Isotopes in the Envelopes of low-mass Red Giants

    Get PDF
    Three-dimensional stellar modeling has enabled us to identify a deep-mixing mechanism that must operate in all low mass giants. This mixing process is not optional, and is driven by a molecular weight inversion created by the 3He(3He,2p)4He reaction. In this paper we characterize the behavior of this mixing, and study its impact on the envelope abundances. It not only eliminates the problem of 3He overproduction, reconciling stellar and big bang nucleosynthesis with observations, but solves the discrepancy between observed and calculated CNO isotope ratios in low mass giants, a problem of more than 3 decades' standing. This mixing mechanism, which we call `δμ\delta\mu-mixing', operates rapidly (relative to the nuclear timescale of overall evolution, ~ 10^8 yrs) once the hydrogen burning shell approaches the material homogenized by the surface convection zone. In agreement with observations, Pop I stars between 0.8 and 2.0\Msun develop 12C/13C ratios of 14.5 +/- 1.5, while Pop II stars process the carbon to ratios of 4.0 +/- 0.5. In stars less than 1.25\Msun, this mechanism also destroys 90% to 95% of the 3He produced on the main sequence.Comment: Final accepted version (submitted to Astrophys J in Jan 2007...

    Deep Mixing of He-3: Reconciling Big Bang and Stellar Nucleosynthesis

    Get PDF
    Low-mass stars, ~1-2 solar masses, near the Main Sequence are efficient at producing He-3, which they mix into the convective envelope on the giant branch and should distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the low observed cosmic abundance of He-3 with the predictions of both stellar and Big Bang nucleosynthesis. In this paper we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between the hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell, where a nuclear reaction lowers the mean molecular weight slightly. Thus we are able to remove the threat that He-3 production in low-mass stars poses to the Big Bang nucleosynthesis of He-3.Comment: Accepted by Science, and available from Science Express onlin

    The shock process and light element production in supernovae envelopes

    Get PDF
    Detailed hydrodynamic modeling of the passage of supernova shocks through the hydrogen envelopes of blue and red progenitor stars was carried out to explore the sensitivity to model conditions of light element production (specifically Li-7 and B-11) which was noted by Dearborn, Schramm, Steigman and Truran (1989) (DSST). It is found that, for stellar models with M is less than or approximately 100 M solar mass, current state of the art supernova shocks do not produce significant light element yields by hydrodynamic processes alone. The dependence of this conclusion on stellar models and on shock strengths is explored. Preliminary implications for Galactic evolution of lithium are discussed, and it is suspected that intermediate mass red giant stars may be the most consistent production site for lithium

    Glitter and Glints on Water

    Get PDF
    We present new observations of glitter and glints using short and long time exposure photographs and high frame rate videos. Using the sun and moon as light sources to illuminate the ocean and laboratory water basins, we found that (1) most glitter takes place on capillary waves rather than on gravity waves, (2) certain aspects of glitter morphology depend on the presence or absence of thin clouds between the light source and the water, and (3) bent glitter paths are caused by asymmetric wave slope distributions We present computer simulations that are able to reproduce the observations and make predictions about the brightness, polarization, and morphology of glitter and glints. We demonstrate that the optical catastrophe represented by creation and annihilation of a glint can be understood using both ray optics and diffraction theory. (C) 2011 Optical Society of Americ

    Bone marrow transplantation alters the tremor phenotype in the murine model of globoid-cell leukodystrophy

    Get PDF
    Tremor is a prominent phenotype of the twitcher mouse, an authentic genetic model of Globoid-Cell Leukodystrophy (GLD, Krabbe’s disease). In the current study, the tremor was quantified using a force-plate actometer designed to accommodate low-weight mice. The actometer records the force oscillations caused by a mouse’s movements, and the rhythmic structure of the force variations can be revealed. Results showed that twitcher mice had significantly increased power across a broad band of higher frequencies compared to wildtype mice. Bone marrow transplantation (BMT), the only available therapy for GLD, worsened the tremor in the twitcher mice and induced a measureable alteration of movement phenotype in the wildtype mice. These data highlight the damaging effects of conditioning radiation and BMT in the neonatal period. The behavioral methodology used herein provides a quantitative approach for assessing the efficacy of potential therapeutic interventions for Krabbe’s disease

    Evolutionary tracks for Betelgeuse

    Full text link
    We have constructed a series of non-rotating quasi-hydrostatic evolutionary models for the M2 Iab supergiant Betelgeuse (α Orionis\alpha~Orionis). Our models are constrained by multiple observed values for the temperature, luminosity, surface composition and mass loss for this star, along with the parallax distance and high resolution imagery that determines its radius. We have then applied our best-fit models to analyze the observed variations in surface luminosity and the size of detected surface bright spots as the result of up-flowing convective material from regions of high temperature in the surface convective zone. We also attempt to explain the intermittently observed periodic variability in a simple radial linear adiabatic pulsation model. Based upon the best fit to all observed data, we suggest a best progenitor mass estimate of 20−3+5M⊙ 20 ^{+5}_{-3} M_\odot and a current age from the start of the zero-age main sequence of 8.0−8.58.0 - 8.5 Myr based upon the observed ejected mass while on the giant branch.Comment: 27 pages, 11 figures, Revised per referee suggestions, Accepted for publication in the Astrophysical Journa

    The Destruction of 3He by Rayleigh-Taylor Instability on the First Giant Branch

    Get PDF
    Low-mass stars, ~1-2 solar masses, near the Main Sequence are efficient at producing 3He, which they mix into the convective envelope on the giant branch and distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the observed cosmic abundance of 3He with the predictions of Big Bang nucleosynthesis. In this paper we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between the hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell. In this zone the burning of the 3He left behind by the retreating convective envelope is predominantly by the reaction 3He + 3He -> 4He + 2p, a reaction which, untypically for stellar nuclear reactions, {\it lowers} the mean molecular weight, leading to a local minimum. This local minimum leads to Rayleigh-Taylor instability, and turbulent motion is generated which will continue ultimately up into the normal convective envelope. Consequently material from the envelope is dragged down sufficiently close to the burning shell that the 3He in it is progressively destroyed. Thus we are able to remove the threat that 3He production in low-mass stars poses to the Big Bang nucleosynthesis of 3He. Some slow mixing mechanism has long been suspected, that connects the convective envelope of a red giant to the burning shell. It appears to be necessary to account for progressive changes in the 12C/13C and 14N/12C ratios on the First Giant Branch. We suggest that these phenomena are also due to the Rayleigh-Taylor-unstable character of the 3He-burning region.Comment: Paper presented at IAU-GA, Prague, August 200

    Bone Marrow Transplantation Alters the Tremor Phenotype in the Murine Model of Globoid-Cell Leukodystrophy

    Get PDF
    This is the publisher's version, also available electronically from "http://www.mdpi.com".Tremor is a prominent phenotype of the twitcher mouse, an authentic genetic model of Globoid-Cell Leukodystrophy (GLD, Krabbe’s disease). In the current study, the tremor was quantified using a force-plate actometer designed to accommodate low-weight mice. The actometer records the force oscillations caused by a mouse’s movements, and the rhythmic structure of the force variations can be revealed. Results showed that twitcher mice had significantly increased power across a broad band of higher frequencies compared to wildtype mice. Bone marrow transplantation (BMT), the only available therapy for GLD, worsened the tremor in the twitcher mice and induced a measureable alteration of movement phenotype in the wildtype mice. These data highlight the damaging effects of conditioning radiation and BMT in the neonatal period. The behavioral methodology used herein provides a quantitative approach for assessing the efficacy of potential therapeutic interventions for Krabbe’s disease

    Comprehensive functional characterization of murine infantile Batten disease including Parkinson-like behavior and dopaminergic markers

    Get PDF
    Infantile neuronal ceroid lipofuscinosis (INCL, Infantile Batten disease) is a neurodegenerative lysosomal storage disease caused by a deficiency in palmitoyl protein thioesterase-1 (PPT1). The PPT1-deficient mouse (Cln1−/−) is a useful phenocopy of human INCL. Cln1−/− mice display retinal dysfunction, seizures, motor deficits, and die at ~8 months of age. However, little is known about the cognitive and behavioral functions of Cln1−/− mice during disease progression. In the present study, younger (~1–2 months of age) Cln1−/− mice showed minor deficits in motor/sensorimotor functions while older (~5–6 months of age) Cln1−/− mice exhibited more severe impairments, including decreased locomotor activity, inferior cued water maze performance, decreased running wheel ability, and altered auditory cue conditioning. Unexpectedly, certain cognitive functions such as some learning and memory capabilities seemed intact in older Cln1−/− mice. Younger and older Cln1−/− mice presented with walking initiation defects, gait abnormalities, and slowed movements, which are analogous to some symptoms reported in INCL and parkinsonism. However, there was no evidence of alterations in dopaminergic markers in Cln1−/− mice. Results from this study demonstrate quantifiable changes in behavioral functions during progression of murine INCL and suggest that Parkinson-like motor/sensorimotor deficits in Cln1−/− mice are not mediated by dopamine deficiency
    • …
    corecore