191 research outputs found

    Development Toward a Ground-Based Interferometric Phased Array for Radio Detection of High Energy Neutrinos

    Get PDF
    The in-ice radio interferometric phased array technique for detection of high energy neutrinos looks for Askaryan emission from neutrinos interacting in large volumes of glacial ice, and is being developed as a way to achieve a low energy threshold and a large effective volume at high energies. The technique is based on coherently summing the impulsive Askaryan signal from multiple antennas, which increases the signal-to-noise ratio for weak signals. We report here on measurements and a simulation of thermal noise correlations between nearby antennas, beamforming of impulsive signals, and a measurement of the expected improvement in trigger efficiency through the phased array technique. We also discuss the noise environment observed with an analog phased array at Summit Station, Greenland, a possible site for an interferometric phased array for radio detection of high energy neutrinos.Comment: 13 Pages, 14 Figure

    Measurements and Modeling of Near-Surface Radio Propagation in Glacial Ice and Implications for Neutrino Experiments

    Get PDF
    We present measurements of radio transmission in the \sim100 MHz range through a 100\sim100 m deep region below the surface of the ice at Summit Station, Greenland, called the firn. In the firn, the index of refraction changes due to the transition from snow at the surface to glacial ice below, affecting the propagation of radio signals in that region. We compare our observations to a finite-difference time-domain (FDTD) electromagnetic wave simulation, which supports the existence of three classes of propagation: a bulk propagation ray-bending mode that leads to so-called "shadowed" regions for certain geometries of transmission, a surface-wave mode induced by the ice/air interface, and an arbitrary-depth horizontal propagation mode that requires perturbations from a smooth density gradient. In the non-shadowed region, our measurements are consistent with the bulk propagation ray-bending mode both in timing and in amplitude. We also observe signals in the shadowed region, in conflict with a bulk-propagation-only ray-bending model, but consistent with FDTD simulations using a variety of firn models for Summit Station. The amplitude and timing of our measurements in all geometries are consistent with the predictions from FDTD simulations. In the shadowed region, the amplitude of the observed signals is consistent with a best-fit coupling fraction value of 2.42.4% (0.06% in power) or less to a surface or horizontal propagation mode from the bulk propagation mode. The relative amplitude of observable signals in the two regions is important for experiments that aim to detect radio emission from astrophysical high-energy neutrinos interacting in glacial ice, which rely on a radio propagation model to inform simulations and perform event reconstruction.Comment: 14 pages, 13 figures, version accepted to PR

    Background Rejection in the DMTPC Dark Matter Search Using Charge Signals

    Full text link
    The Dark Matter Time Projection Chamber (DMTPC) collaboration is developing low-pressure gas TPC detectors for measuring WIMP-nucleon interactions. Optical readout with CCD cameras allows for the detection for the daily modulation in the direction of the dark matter wind, while several charge readout channels allow for the measurement of additional recoil properties. In this article, we show that the addition of the charge readout analysis to the CCD allows us too obtain a statistics-limited 90% C.L. upper limit on the ee^- rejection factor of 5.6×1065.6\times10^{-6} for recoils with energies between 40 and 200 keVee_{\mathrm{ee}}. In addition, requiring coincidence between charge signals and light in the CCD reduces CCD-specific backgrounds by more than two orders of magnitude.Comment: 8 pages, 6 figures. For proceedings of DPF 2011 conferenc

    Measurements and modeling of near-surface radio propagation in glacial ice and implications for neutrino experiments

    Get PDF
    We present measurements of radio transmission in the ∼ 100 MHz range through a ∼ 100 m deep region below the surface of the ice at Summit Station, Greenland, called the firn. In the firn, the index of refraction changes due to the transition from snow at the surface to glacial ice below, affecting the propagation of radio signals in that region. We compare our observations to a finite-difference time-domain (FDTD) electromagnetic wave simulation, which supports the existence of three classes of propagation: a bulk propagation ray-bending mode that leads to so-called “shadowed” regions for certain geometries of transmission, a surface-wave mode induced by the ice/air interface, and an arbitrary-depth horizontal propagation mode that requires perturbations from a smooth density gradient. In the non-shadowed region, our measurements are consistent with the bulk propagation ray-bending mode both in timing and in amplitude. We also observe signals in the shadowed region, in conflict with a bulk-propagation-only ray-bending model, but consistent with FDTD simulations using a variety of firn models for Summit Station. The amplitude and timing of our measurements in all geometries are consistent with the predictions from FDTD simulations. In the shadowed region, the amplitude of the observed signals is consistent with a best-fit coupling fraction value of 2.4% (0.06% in power) or less to a surface or horizontal propagation mode from the bulk propagation mode. The relative amplitude of observable signals in the two regions is important for experiments that aim to detect radio emission from astrophysical high-energy neutrinos interacting in glacial ice, which rely on a radio propagation model to inform simulations and perform event reconstruction

    KMS states and conformal measures

    Full text link
    From a non-constant holomorphic map on a connected Riemann surface we construct an 'etale second countable locally compact Hausdorff groupoid whose associated groupoid C*-algebra admits a one-parameter group of automorphisms with the property that its KMS states corresponds to conformal measures in the sense of Sullivan. In this way certain quadratic polynomials give rise to quantum statistical models with a phase transition arising from spontaneous symmetry breaking.Comment: The last section revised. This version will appear in Comm. Math. Phy

    First Dark Matter Search Results from a Surface Run of the 10-L DMTPC Directional Dark Matter Detector

    Get PDF
    The Dark Matter Time Projection Chamber (DMTPC) is a low pressure (75 Torr CF4) 10 liter detector capable of measuring the vector direction of nuclear recoils with the goal of directional dark matter detection. In this paper we present the first dark matter limit from DMTPC. In an analysis window of 80-200 keV recoil energy, based on a 35.7 g-day exposure, we set a 90% C.L. upper limit on the spin-dependent WIMP-proton cross section of 2.0 x 10^{-33} cm^{2} for 115 GeV/c^2 dark matter particle mass.Comment: accepted for publication in Physics Letters
    corecore