72 research outputs found

    Downregulation of Homologous Recombination DNA Repair Genes by HDAC Inhibition in Prostate Cancer Is Mediated through the E2F1 Transcription Factor

    Get PDF
    Histone deacetylase inhibitors (HDACis) re-express silenced tumor suppressor genes and are currently undergoing clinical trials. Although HDACis have been known to induce gene expression, an equal number of genes are downregulated upon HDAC inhibition. The mechanism behind this downregulation remains unclear. Here we provide evidence that several DNA repair genes are downregulated by HDAC inhibition and provide a mechanism involving the E2F1 transcription factor in the process.Applying Analysis of Functional Annotation (AFA) on microarray data of prostate cancer cells treated with HDACis, we found a number of genes of the DNA damage response and repair pathways are downregulated by HDACis. AFA revealed enrichment of homologous recombination (HR) DNA repair genes of the BRCA1 pathway, as well as genes regulated by the E2F1 transcription factor. Prostate cancer cells demonstrated a decreased DNA repair capacity and an increased sensitization to chemical- and radio-DNA damaging agents upon HDAC inhibition. Recruitment of key HR repair proteins to the site of DNA damage, as well as HR repair capacity was compromised upon HDACi treatment. Based on our AFA data, we hypothesized that the E2F transcription factors may play a role in the downregulation of key repair genes upon HDAC inhibition in prostate cancer cells. ChIP analysis and luciferase assays reveal that the downregulation of key repair genes is mediated through decreased recruitment of the E2F1 transcription factor and not through active repression by repressive E2Fs.Our study indicates that several genes in the DNA repair pathway are affected upon HDAC inhibition. Downregulation of the repair genes is on account of a decrease in amount and promoter recruitment of the E2F1 transcription factor. Since HDAC inhibition affects several pathways that could potentially have an impact on DNA repair, compromised DNA repair upon HDAC inhibition could also be attributed to several other pathways besides the ones investigated in this study. However, our study does provide insights into the mechanism that governs downregulation of HR DNA repair genes upon HDAC inhibition, which can lead to rationale usage of HDACis in the clinics

    FISH analysis of 107 prostate cancers shows that PTEN genomic deletion is associated with poor clinical outcome

    Get PDF
    This study examines the clinical impact of PTEN genomic deletions using fluorescence in situ hybridisation (FISH) analysis of 107 prostate cancers, with follow-up information covering a period of up to 10 years. Tissue microarray analysis using interphase FISH indicated that hemizygous PTEN losses were present in 42/107 (39%) of prostatic adenocarcinomas, with a homozygous PTEN deletion observed in 5/107 (5%) tumours. FISH analysis using closely linked probes centromeric and telomeric to the PTEN indicated that subband microdeletions accounted for ∼70% genomic losses. Kaplan–Meier survival analysis of PTEN genomic losses (hemizygous and homozygous deletion vs not deleted) identified subgroups with different prognosis based on their time to biochemical relapse after surgery, and demonstrated significant association between PTEN deletion and an earlier onset of disease recurrence (as determined by prostate-specific antigen levels). Homozygous PTEN deletion was associated with a much earlier onset of biochemical recurrence (P=0.002). Furthermore, PTEN loss at the time of prostatectomy correlated with clinical parameters of more advanced disease, such as extraprostatic extension and seminal vesicle invasion. Collectively, our data indicates that haploinsufficiency or PTEN genomic loss is an indicator of more advanced disease at surgery, and is predictive of a shorter time to biochemical recurrence of disease

    Triptolide Inhibits the Proliferation of Prostate Cancer Cells and Down-Regulates SUMO-Specific Protease 1 Expression

    Get PDF
    Recently, traditional Chinese medicine and medicinal herbs have attracted more attentions worldwide for its anti-tumor efficacy. Celastrol and Triptolide, two active components extracted from the Chinese herb Tripterygium wilfordii Hook F (known as Lei Gong Teng or Thunder of God Vine), have shown anti-tumor effects. Celastrol was identified as a natural 26 s proteasome inhibitor which promotes cell apoptosis and inhibits tumor growth. The effect and mechanism of Triptolide on prostate cancer (PCa) is not well studied. Here we demonstrated that Triptolide, more potent than Celastrol, inhibited cell growth and induced cell death in LNCaP and PC-3 cell lines. Triptolide also significantly inhibited the xenografted PC-3 tumor growth in nude mice. Moreover, Triptolide induced PCa cell apoptosis through caspases activation and PARP cleavage. Unbalance between SUMOylation and deSUMOylation was reported to play an important role in PCa progression. SUMO-specific protease 1 (SENP1) was thought to be a potential marker and therapeutical target of PCa. Importantly, we observed that Triptolide down-regulated SENP1 expression in both mRNA and protein levels in dose-dependent and time-dependent manners, resulting in an enhanced cellular SUMOylation in PCa cells. Meanwhile, Triptolide decreased AR and c-Jun expression at similar manners, and suppressed AR and c-Jun transcription activity. Furthermore, knockdown or ectopic SENP1, c-Jun and AR expression in PCa cells inhibited the Triptolide anti-PCa effects. Taken together, our data suggest that Triptolide is a natural compound with potential therapeutic value for PCa. Its anti-tumor activity may be attributed to mechanisms involving down-regulation of SENP1 that restores SUMOylation and deSUMOyaltion balance and negative regulation of AR and c-Jun expression that inhibits the AR and c-Jun mediated transcription in PCa

    SEARCH FOR SLOWLY MOVING MAGNETIC MONOPOLES WITH THE MACRO DETECTOR

    Get PDF
    A search for slowly moving magnetic monopoles in the cosmic radiation was conducted from October 1989 to November 1991 using the large liquid scintillator detector subsystem of the first supermodule of the MACRO detector at the Gran Sasso underground laboratory. The absence of candidates established an upper limit on the monopole flux of 5.6 x 10(-15) cm-2 sr-1 s-1 at 90% confidence level in the velocity range of 10(-4) less than or similar to beta < 4 x 10(-3). This result places a new constraint on the abundance of monopoles trapped in our solar system

    c-Myc antagonises the transcriptional activity of the androgen receptor in prostate cancer affecting key gene networks.

    No full text
    Prostate cancer (PCa) is the most common non-cutaneous cancer in men. The androgen receptor (AR), a ligand-activated transcription factor, constitutes the main drug target for advanced cases of the disease. However, a variety of other transcription factors and signaling networks have been shown to be altered in patients and to influence AR activity. Amongst these, the oncogenic transcription factor c-Myc has been studied extensively in multiple malignancies and elevated protein levels of c-Myc are commonly observed in PCa. Its impact on AR activity, however, remains elusive. In this study, we assessed the impact of c-Myc overexpression on AR activity and transcriptional output in a PCa cell line model and validated the antagonistic effect of c-MYC on AR-targets in patient samples. We found that c-Myc overexpression partially reprogrammed AR chromatin occupancy and was associated with altered histone marks distribution, most notably H3K4me1 and H3K27me3. We found c-Myc and the AR co-occupy a substantial number of binding sites and these exhibited enhancer-like characteristics. Interestingly, c-Myc overexpression antagonised clinically relevant AR target genes. Therefore, as an example, we validated the antagonistic relationship between c-Myc and two AR target genes, KLK3 (alias PSA, prostate specific antigen), and Glycine N-Methyltransferase (GNMT), in patient samples. Our findings provide unbiased evidence that MYC overexpression deregulates the AR transcriptional program, which is thought to be a driving force in PCa
    • …
    corecore