29 research outputs found

    Experimental infection model for vibriosis in Dover sole (<i>Solea solea</i>) larvae as an aid in studying its pathogenesis and alternative treatments

    Get PDF
    Severe economic losses due to diseases in marine larviculture may be linked to vibriosis. To better understand the pathogenesis of vibriosis and evaluate new ways to prevent and combat this important disease, there is a great need for reliable and reproducible experimental infection models. The present study aimed at developing a challenge model for vibriosis in Dover sole larvae and testing its applicability to study the effect of the probiotic treatment. For that purpose, larvae were challenged at 10 days post hatching with Vibrio anguillarum WT, V. anguillarum HI610 or V. harveyi WT. Following administration of V. anguillarum WT via immersion at 1 × 107 colony forming units/mL, a larval mortality of 50% was observed at 17 days post-inoculation. In a next step, the probiotic potential of 371 isolates retrieved from Dover sole was assessed by screening for their inhibitory effects against Vibrio spp. and absence of haemolytic activity. One remaining isolate (V. proteolyticus) and V. lentus, known for its protective characteristics in seabass larvae, were further tested in vivo by means of the pinpointed experimental infection model. Neither isolate provided via the water or feed proved to be protective for the Dover sole larvae against challenge with V. anguillarum WT. This developed challenge model constitutes a firm basis to expedite basic and applied research regarding the pathogenesis and treatment of vibriosis as well as for studying the impact of (a)biotic components on larval health

    Risk sharing arrangements for pharmaceuticals: potential considerations and recommendations for European payers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There has been an increase in 'risk sharing' schemes for pharmaceuticals between healthcare institutions and pharmaceutical companies in Europe in recent years as an additional approach to provide continued comprehensive and equitable healthcare. There is though confusion surrounding the terminology as well as concerns with existing schemes.</p> <p>Methods</p> <p>Aliterature review was undertaken to identify existing schemes supplemented with additional internal documents or web-based references known to the authors. This was combined with the extensive knowledge of health authority personnel from 14 different countries and locations involved with these schemes.</p> <p>Results and discussion</p> <p>A large number of 'risk sharing' schemes with pharmaceuticals are in existence incorporating both financial-based models and performance-based/outcomes-based models. In view of this, a new logical definition is proposed. This is "<it>risk sharing' schemes should be considered as agreements concluded by payers and pharmaceutical companies to diminish the impact on payers' budgets for new and existing schemes brought about by uncertainty and/or the need to work within finite budgets</it>". There are a number of concerns with existing schemes. These include potentially high administration costs, lack of transparency, conflicts of interest, and whether health authorities will end up funding an appreciable proportion of a new drug's development costs. In addition, there is a paucity of published evaluations of existing schemes with pharmaceuticals.</p> <p>Conclusion</p> <p>We believe there are only a limited number of situations where 'risk sharing' schemes should be considered as well as factors that should be considered by payers in advance of implementation. This includes their objective, appropriateness, the availability of competent staff to fully evaluate proposed schemes as well as access to IT support. This also includes whether systematic evaluations have been built into proposed schemes.</p

    Germ-free sea bass <i>Dicentrarchus labrax</i> larval model: a valuable tool in the study of host-microbe interactions

    No full text
    A thorough understanding of host-microbe interactions is crucial for more efficient disease management in the marine larviculture industry. As demonstrated in terrestrial animal research, gnotobiotic systems (involving animals cultured in germ-free conditions or inoculated with known microorganisms) are excellent tools to extend our understanding of the mechanisms involved in host-microbe interactions and allow the evaluation of new treatments for diseases. In this study, we introduce a germ-free European sea bass Dicentrarchus labrax larval model, independent of the continuous addition of antimicrobial agents. This model has an experimental set-up that allows addition of live feed to the larvae without compromising the germ-free status. This model will facilitate and render aquaculture research more effective in terms of mitigation fish larval diseases

    Model-assisted evaluation of crop load effects on stem diameter variations and fruit growth in peach

    No full text
    Key message: The paper identifies and quantifies how crop load influences plant physiological variables that determine stem diameter variations to better understand the effect of crop load on drought stress indicators. Stem diameter (D (stem)) variations have extensively been applied in optimisation strategies for plant-based irrigation scheduling in fruit trees. Two D (stem) derived water status indicators, maximum daily shrinkage (MDS) and daily growth rate (DGR), are however influenced by other factors such as crop load, making it difficult to unambiguously use these indicators in practical irrigation applications. Furthermore, crop load influences the growth of individual fruits, because of competition for assimilates. This paper aims to explain the effect of crop load on DGR, MDS and individual fruit growth in peach using a water and carbon transport model that includes simulation of stem diameter variations. This modelling approach enabled to relate differences in crop load to differences in xylem and phloem water potential components. As such, crop load effects on DGR were attributed to effects on the stem phloem turgor pressure. The effect of crop load on MDS could be explained by the plant water status, the phloem carbon concentration and the elasticity of the tissue. The influence on fruit growth could predominantly be explained by the effect on the early fruit growth stages

    Automatic drought stress detection in grapevines without using conventional threshold values

    No full text
    Aims : Because the water status of grapevines strongly affects the quality of the grapes and resulting wine, automated and early drought stress detection is important. Plant measurements are very promising for detecting drought stress, but strongly depend on microclimatic changes. Therefore, conventional stress detection methods require threshold values which define when plants start sensing drought stress. There is however no unique method to define these values. In this study, we propose two techniques that overcome this limitation. Methods : Two statistical methods were used to automatically distinguish between drought and microclimate effects, based on a short preceding full-irrigated period to extract plant behaviour under normal conditions: Unfold Principal Component Analysis (UPCA) and Functional Unfold Principal Component Analysis (FUPCA). Both techniques aimed at detecting when measured sap flow rate or stem diameter variations in grapevine deviated from their normal behaviour due to drought stress. Results : The models based on sap flow rate had some difficulties to detect stress on days with low atmospheric demands, while those based on stem diameter variations did not show this limitation, but ceased detecting stress when the stem diameter levelled off after a period of severe shrinkage. Nevertheless, stress was successfully detected with both approaches days before visible symptoms appeared. Conclusions : UPCA and FUPCA based on plant indicators are therefore very promising for early stress detection
    corecore