4,001 research outputs found

    A new 1.6-micron map of Titan’s surface

    Get PDF
    We present a new map of Titan's surface obtained in the spectral 'window' at ∼1.6 μm between strong methane absorption. This pre-Cassini view of Titan's surface was created from images obtained using adaptive optics on the W.M. Keck II telescope and is the highest resolution map yet made of Titan's surface. Numerous surface features down to the limits of the spatial resolution (∼200–300 km) are apparent. No features are easily identifiable in terms of their geologic origin, although several are likely craters

    Mutual Event Observations of Io's Sodium Corona

    Get PDF
    We have measured the column density profile of Io's sodium corona using 10 mutual eclipses between the Galilean satellites. This approach circumvents the problem of spatially resolving Io's corona directly from Io's bright continuum in the presence of atmospheric seeing and telescopic scattering. The primary goal is to investigate the spatial and temporal variations of Io's corona. Spectra from the Keck Observatory and McDonald Observatory from 1997 reveal a corona that is only approximately spherically symmetric around Io. Comparing the globally averaged radial sodium column density profile in the corona with profiles measured in 1991 and 1985, we find that there has been no significant variation. However, there appears to be a previously undetected asymmetry: the corona above Io's sub-Jupiter hemisphere is consistently more dense than above the anti-Jupiter hemisphere

    The impact of a large object with Jupiter in July 2009

    Full text link
    On 2009 July 19, we observed a single, large impact on Jupiter at a planetocentric latitude of 55^{\circ}S. This and the Shoemaker-Levy 9 (SL9) impacts on Jupiter in 1994 are the only planetary-scale impacts ever observed. The 2009 impact had an entry trajectory opposite and with a lower incidence angle than that of SL9. Comparison of the initial aerosol cloud debris properties, spanning 4,800 km east-west and 2,500 km north-south, with those produced by the SL9 fragments, and dynamical calculations of pre-impact orbit, indicate that the impactor was most probably an icy body with a size of 0.5-1 km. The collision rate of events of this magnitude may be five to ten times more frequent than previously thought. The search for unpredicted impacts, such as the current one, could be best performed in 890-nm and K (2.03-2.36 {\mu}m) filters in strong gaseous absorption, where the high-altitude aerosols are more reflective than Jupiter's primary cloud.Comment: 15 pages, 5 figure

    The TAOS Project: Statistical Analysis of Multi-Telescope Time Series Data

    Get PDF
    The Taiwanese-American Occultation Survey (TAOS) monitors fields of up to ~1000 stars at 5 Hz simultaneously with four small telescopes to detect occultation events from small (~1 km) Kuiper Belt Objects (KBOs). The survey presents a number of challenges, in particular the fact that the occultation events we are searching for are extremely rare and are typically manifested as slight flux drops for only one or two consecutive time series measurements. We have developed a statistical analysis technique to search the multi-telescope data set for simultaneous flux drops which provides a robust false positive rejection and calculation of event significance. In this paper, we describe in detail this statistical technique and its application to the TAOS data set.Comment: 15 pages, 14 figures. Submitted to PAS

    The Taiwanese-American Occultation Survey: The Multi-Telescope Robotic Observatory

    Get PDF
    The Taiwanese-American Occultation Survey (TAOS) operates four fully automatic telescopes to search for occultations of stars by Kuiper Belt Objects. It is a versatile facility that is also useful for the study of initial optical GRB afterglows. This paper provides a detailed description of the TAOS multi-telescope system, control software, and high-speed imaging.Comment: 11 pages, 11 figure

    Radial velocity eclipse mapping of exoplanets

    Get PDF
    Planetary rotation rates and obliquities provide information regarding the history of planet formation, but have not yet been measured for evolved extrasolar planets. Here we investigate the theoretical and observational perspective of the Rossiter-McLauglin effect during secondary eclipse (RMse) ingress and egress for transiting exoplanets. Near secondary eclipse, when the planet passes behind the parent star, the star sequentially obscures light from the approaching and receding parts of the rotating planetary surface. The temporal block of light emerging from the approaching (blue-shifted) or receding (red-shifted) parts of the planet causes a temporal distortion in the planet's spectral line profiles resulting in an anomaly in the planet's radial velocity curve. We demonstrate that the shape and the ratio of the ingress-to-egress radial velocity amplitudes depends on the planetary rotational rate, axial tilt and impact factor (i.e. sky-projected planet spin-orbital alignment). In addition, line asymmetries originating from different layers in the atmosphere of the planet could provide information regarding zonal atmospheric winds and constraints on the hot spot shape for giant irradiated exoplanets. The effect is expected to be most-pronounced at near-infrared wavelengths, where the planet-to-star contrasts are large. We create synthetic near-infrared, high-dispersion spectroscopic data and demonstrate how the sky-projected spin axis orientation and equatorial velocity of the planet can be estimated. We conclude that the RMse effect could be a powerful method to measure exoplanet spins.Comment: 7 pages, 3 figures, 1 table, accepted for publication in ApJ on 2015 June 1

    A Close Binary Star Resolved from Occultation by 87 Sylvia

    Get PDF
    The star BD+29 1748 was resolved to be a close binary from its occultation by the asteroid 87 Sylvia on 2006 December 18 UT. Four telescopes were used to observe this event at two sites separated by some 80 km apart. Two flux drops were observed at one site, whereas only one flux drop was detected at the other. From the long-term variation of Sylvia, we inferred the probable shape of the shadow during the occultation, and this in turn constrains the binary parameters: the two components of BD+29 1748 have a projected separation of 0.097" to 0.110" on the sky with a position angle 104 deg to 107 deg. The asteroid was clearly resolved with a size scale ranging from 130 to 290 km, as projected onto the occultation direction. No occultation was detected for either of the two known moonlets of 87 Sylvia.Comment: 12 pages, 4 figures, 2 tables; submitted to the PAS
    corecore