6,217 research outputs found

    Multiparticle Quantum Superposition and Stimulated Entanglement by Parity Selective Amplification of Entangled States

    Full text link
    A multiparticle quantum superposition state has been generated by a novel phase-selective parametric amplifier of an entangled two-photon state. This realization is expected to open a new field of investigations on the persistence of the validity of the standard quantum theory for systems of increasing complexity, in a quasi decoherence-free environment. Because of its nonlocal structure the new system is expected to play a relevant role in the modern endeavor on quantum information and in the basic physics of entanglement.Comment: 13 pages and 3 figure

    Continuous variable cloning via network of parametric gates

    Full text link
    We propose an experimental scheme for the cloning machine of continuous quantum variables through a network of parametric amplifiers working as input-output four-port gates.Comment: 4 pages, 2 figures. To appear on Phys. Rev. Let

    Contextual Realization of the Universal Quantum Cloning Machine and of the Universal-NOT gate by Quantum Injected Optical Parametric Amplification

    Full text link
    A simultaneous, contextual experimental demonstration of the two processes of cloning an input qubit and of flipping it into the orthogonal qubit is reported. The adopted experimental apparatus, a Quantum-Injected Optical Parametric Amplifier (QIOPA) is transformed simultaneously into a Universal Optimal Quantum Cloning Machine (UOQCM) and into a Universal NOT quantum-information gate. The two processes, indeed forbidden in their exact form for fundamental quantum limitations, will be found to be universal and optimal, i.e. the measured fidelity of both processes F<1 will be found close to the limit values evaluated by quantum theory. A contextual theoretical and experimental investigation of these processes, which may represent the basic difference between the classical and the quantum worlds, can reveal in a unifying manner the detailed structure of quantum information. It may also enlighten the yet little explored interconnections of fundamental axiomatic properties within the deep structure of quantum mechanics. PACS numbers: 03.67.-a, 03.65.Ta, 03.65.UdComment: 27 pages, 7 figure

    Experimental reversion of the optimal quantum cloning and flipping processes

    Full text link
    The quantum cloner machine maps an unknown arbitrary input qubit into two optimal clones and one optimal flipped qubit. By combining linear and non-linear optical methods we experimentally implement a scheme that, after the cloning transformation, restores the original input qubit in one of the output channels, by using local measurements, classical communication and feedforward. This significant teleportation-like method demonstrates how the information is preserved during the cloning process. The realization of the reversion process is expected to find useful applications in the field of modern multi-partite quantum cryptography.Comment: 10 pages, 3 figure

    Anomalous resilient to decoherence macroscopic quantum superpositions generated by universally covariant optimal quantum cloning

    Full text link
    We show that the quantum states generated by universal optimal quantum cloning of a single photon represent an universal set of quantum superpositions resilient to decoherence. We adopt Bures distance as a tool to investigate the persistence ofquantum coherence of these quantum states. According to this analysis, the process of universal cloning realizes a class of quantum superpositions that exhibits a covariance property in lossy configuration over the complete set of polarization states in the Bloch sphere.Comment: 8 pages, 6 figure

    Preliminary slip rate estimates for the DĂĽzce segment of the North Anatolian Fault Zone from offset geomorphic markers

    Get PDF
    New estimates on the Quaternary slip rate of the active transform margin of North Anatolia are provided. We investigated the area struck by the 12th November 1999, Mw 7.1 earthquake, that ruptured the Düzce fault segment of the North Anatolian Fault. In order to analyze the spectacular tectonically driven cumulative landforms and the drainage pattern settings, we carried out a 1:25,000-scale geological and geomorphological mapping along the fault trace. We reconstruct and describe, as offset geomorphic markers, right-hand stream deflections and fluvial terraces inset into alluvial fan deposits. Radiocarbon dating indicates that ~100 m stream deflections were built up by the last ~7000 yrs of fault activity. Conversely, two documented and correlated Late Pleistocene fluvial terraces are horizontally offset by ~300 and ~900 m, respectively. These were dated by means of Optically Stimulated Luminescence (OSL) to ~21 ka BP and 60 ka BP. Assuming a constant rate of deformation for the Düzce Fault, ages and related offsets translate to consistent slip-rates that yield an average slip-rate of 15.0 ± 3.2 mm/yr for the last 60 ka. Thus, the Düzce Fault importantly contributes to the North Anatolian margin deformation, suggesting a present-day partitioning of displacement rates with the Mudurnu fault to the south and confirming its important role in the seismic hazard of the area

    Enhancing the Violation of the Einstein-Podolsky-Rosen Local Realism by Quantum Hyper-entanglement

    Get PDF
    Mermin's observation [Phys. Rev. Lett. {\bf 65}, 1838 (1990)] that the magnitude of the violation of local realism, defined as the ratio between the quantum prediction and the classical bound, can grow exponentially with the size of the system is demonstrated using two-photon hyper-entangled states entangled in polarization and path degrees of freedom, and local measurements of polarization and path simultaneously.Comment: Minor errors corrected. To appear on Physical Review Letter

    LADDER PROOF OF NONLOCALITY WITHOUT INEQUALITIES : THEORETICAL AND EXPERIMENTAL RESULTS

    Get PDF
    We show how a previous demonstration of nonlocality without inequalities for two spin-half particles can be improved so that a greater proportion of the pairs are shown to be subject to a contradiction with local realism. This is achieved by considering more settings of the apparatus at each end. Also, we report on an experimental realization employing a tunable source of polarization entangled photons. The experimental results violate locality (modulo, the efficiency loophole). {copyright} {ital 1997} {ital The American Physical Society

    Combining inland and offshore paleotsunamis evidence: the Augusta Bay (eastern Sicily, Italy) case study

    Get PDF
    Offshore and inland geological evidence for multiple tsunami inundations was found in the Augusta Bay area: (1) the main local historical tsunamis (1908, 1693, 1169), (2) two far-generated tsunamis (i.e. Crete 365AD and Santorini, 3600 BP), and (3) seven unknown tsunamis). Average tsunami recurrence intervals from inland and offshore investigations of about 550 and 320 yr, respectively were obtained for the past 4 ka. The history of paleotsunamis from the marine record appears to be as complete as the historical one for the past millennium, yielding an average tsunami recurrence interval of 250 yr for the Augusta Bay. Geological data allow also estimating a minimum tsunami inundation distance of 530m and a minimum run-up of 5 m. The marine record contains evidence for more paleotsunamis with respect to the inland one because of continuous sedimentation and better preservation of stratigraphy in the offshore with respect to coastal areas, which are commonly affected by intermittent-erosion and sedimentation and anthropic activities. This work shows that the integration of geological and historical data can provide critical information regarding the extent and age of tsunamis of the past (e.g. inundation distance, age, and frequency), which is of immediate relevance for tsunami hazard assessment

    "All-versus-nothing" nonlocality test of quantum mechanics by two-photon hyperentanglement

    Full text link
    We report the experimental realization and the characterization of polarization and momentum hyperentangled two photon states, generated by a new parametric source of correlated photon pairs. By adoption of these states an "all versus nothing" test of quantum mechanics was performed. The two photon hyperentangled states are expected to find at an increasing rate a widespread application in state engineering and quantum information. PACS: 03.65.Ud, 03.67.Mn, 42.65. LmComment: Replaced with published versio
    • …
    corecore