1,338 research outputs found
Entanglement genesis by ancilla-based parity measurement in 2D circuit QED
We present an indirect two-qubit parity meter in planar circuit quantum
electrodynamics, realized by discrete interaction with an ancilla and a
subsequent projective ancilla measurement with a dedicated, dispersively
coupled resonator. Quantum process tomography and successful entanglement by
measurement demonstrate that the meter is intrinsically quantum non-demolition.
Separate interaction and measurement steps allow commencing subsequent data
qubit operations in parallel with ancilla measurement, offering time savings
over continuous schemes.Comment: 5 pages, 4 figures; supplemental material with 5 figure
Partial-measurement back-action and non-classical weak values in a superconducting circuit
We realize indirect partial measurement of a transmon qubit in circuit
quantum electrodynamics by interaction with an ancilla qubit and projective
ancilla measurement with a dedicated readout resonator. Accurate control of the
interaction and ancilla measurement basis allows tailoring the measurement
strength and operator. The tradeoff between measurement strength and qubit
back-action is characterized through the distortion of a qubit Rabi oscillation
imposed by ancilla measurement in different bases. Combining partial and
projective qubit measurements, we provide the solid-state demonstration of the
correspondence between a non-classical weak value and the violation of a
Leggett-Garg inequality.Comment: 5 pages, 4 figures, and Supplementary Information (8 figures
Improved convergence and stability properties in a three-dimensional higher-order ice sheet model
We present a finite difference implementation of a three-dimensional higher-order ice sheet model. In comparison to a conventional centred difference discretisation it enhances both numerical stability and convergence. In order to achieve these benefits the discretisation of the governing force balance equation makes extensive use of information on staggered grid points. Using the same iterative solver, a centred difference discretisation that operates exclusively on the regular grid serves as a reference. The reprise of the ISMIP-HOM experiments indicates that both discretisations are capable of reproducing the higher-order model inter-comparison results. This setup allows a direct comparison of the two numerical implementations also with respect to their convergence behaviour. First and foremost, the new finite difference scheme facilitates convergence by a factor of up to 7 and 2.6 in average. In addition to this decrease in computational costs, the accuracy for the resultant velocity field can be chosen higher in the novel finite difference implementation. Changing the discretisation also prevents build-up of local field irregularites that occasionally cause divergence of the solution for the reference discretisation. <br><br> The improved behaviour makes the new discretisation more reliable for extensive application to real ice geometries. Higher accuracy and robust numerics are crucial in time dependent applications since numerical oscillations in the velocity field of subsequent time steps are attenuated and divergence of the solution is prevented
A platform independent communication library for distributed computing
We present MPWide, a platform independent communication library for performing message passing between supercomputers. Our library couples several local MPI applications through a long distance network using, for example, optical links. The implementation is deliberately kept light-weight, platform independent and the library can be installed and used without administrative privileges. The only requirements are a C++ compiler and at least one open port to a wide area network on each site. In this paper we present the library, describe the user interface, present performance tests and apply MPWide in a large scale cosmological N-body simulation on a network of two computers, one in Amsterdam and the other in Tokyo
Probing dynamics of an electron-spin ensemble via a superconducting resonator
We study spin relaxation and diffusion in an electron-spin ensemble of
nitrogen impurities in diamond at low temperature (0.25-1.2 K) and polarizing
magnetic field (80-300 mT). Measurements exploit mode- and
temperature-dependent coupling of hyperfine-split sub-ensembles to the
resonator. Temperature-independent spin linewidth and relaxation time suggest
that spin diffusion limits spin relaxation. Depolarization of one sub-ensemble
by resonant pumping of another indicates fast cross-relaxation compared to spin
diffusion, with implications on use of sub-ensembles as independent quantum
memories.Comment: 5 pages, 5 figures, and Supplementary Information (2 figures
- …