3,132 research outputs found

    Interacting Kasner-type cosmologies

    Full text link
    It is well known that Kasner-type cosmologies provide a useful framework for analyzing the three-dimensional anisotropic expansion because of the simplification of the anisotropic dynamics. In this paper relativistic multi-fluid Kasner-type scenarios are studied. We first consider the general case of a superposition of two ideal cosmic fluids, as well as the particular cases of non-interacting and interacting ones, by introducing a phenomenological coupling function q(t)q(t). For two-fluid cosmological scenarios there exist only cosmological scaling solutions, while for three-fluid configurations there exist not only cosmological scaling ones, but also more general solutions. In the case of triply interacting cosmic fluids we can have energy transfer from two fluids to a third one, or energy transfer from one cosmic fluid to the other two. It is shown that by requiring the positivity of energy densities there always is a matter component which violates the dominant energy condition in this kind of anisotropic cosmological scenarios.Comment: Accepted for publication in Astrophysics &Space Science, 8 page

    Feasibility of a wearable reflectometric system for sensing skin hydration

    Get PDF
    One of the major goals of Health 4.0 is to offer personalized care to patients, also through real-time, remote monitoring of their biomedical parameters. In this regard, wearable monitoring systems are crucial to deliver continuous appropriate care. For some biomedical parameters, there are a number of well established systems that offer adequate solutions for real-time, continuous patient monitoring. On the other hand, monitoring skin hydration still remains a challenging task. The continuous monitoring of this physiological parameter is extremely important in several contexts, for example for athletes, sick people, workers in hostile environments or for the elderly. State-of-the-art systems, however, exhibit some limitations, especially related with the possibility of continuous, real-time monitoring. Starting from these considerations, in this work, the feasibility of an innovative time-domain reflectometry (TDR)-based wearable, skin hydration sensing system for real-time, continuous monitoring of skin hydration level was investigated. The applicability of the proposed system was demonstrated, first, through experimental tests on reference substances, then, directly on human skin. The obtained results demonstrate the TDR technique and the proposed system holds unexplored potential for the aforementioned purposes

    Monopoles and clusters

    Get PDF
    We define and study certain hyperkaehler manifolds which capture the asymptotic behaviour of the SU(2)-monopole metric in regions where monopoles break down into monopoles of lower charges. The rate at which these new metrics approximate the monopole metric is exponential, as for the Gibbons-Manton metric.Comment: v2.: relation to calorons mentioned; added explanation

    TDR-based water content estimation on globigerina limestone through permittivity measurements

    Get PDF
    Most monuments and historical buildings in the Maltese Islands are made of the local Globigerina Limestone (GL). This type of stone, however, is very delicate and prone to degradation caused by the environmental conditions of the islands. Hence, for the preservation of the Cultural Heritage monuments, it is necessary to promptly assess the health status of these structures and, in particular, their water content (which represents one of the major causes of degradation). Starting from these considerations, in this work, a time domain reflectometry (TDR)-based method for estimating water content of GL is presented. More specifically, the proposed method relies on estimating the water content value of the GL structure from TDR-based dielectric permittivity measurements. To verify the suitability of this system, experimental tests were carried out on a GL sample. The results anticipate the strong potential of the proposed method for practical applications in the Cultural Heritage diagnostics

    A RICH detector for strangeness physics in Hall A at Jefferson Lab

    Get PDF
    The high-resolution hypernuclear spectroscopy experiment at Jefferson Lab, Hall A (E94-107), needs unambiguous kaon identification. Due to the huge pion and proton background, the standard Hall A hadron particle identification, based on a time of flight and two aerogel threshold Cherenkov detectors, is not sufficient. For this task a proximity focusing C6F14/CsI RICH has been built. Recently, after some improvements to the mechanical structure of its wire chamber and to its electronics rate capability, the RICH has been tested with cosmic rays. This paper represents a status report of the RICH detector

    Gopakumar-Vafa invariants via vanishing cycles

    Get PDF
    In this paper, we propose an ansatz for defining Gopakumar-Vafa invariants of Calabi-Yau threefolds, using perverse sheaves of vanishing cycles. Our proposal is a modification of a recent approach of Kiem-Li, which is itself based on earlier ideas of Hosono-Saito-Takahashi. We conjecture that these invariants are equivalent to other curve-counting theories such as Gromov-Witten theory and Pandharipande-Thomas theory. Our main theorem is that, for local surfaces, our invariants agree with PT invariants for irreducible one-cycles. We also give a counter-example to the Kiem-Li conjectures, where our invariants match the predicted answer. Finally, we give examples where our invariant matches the expected answer in cases where the cycle is non-reduced, non-planar, or non-primitive.Comment: 63 pages, many improvements of the exposition following referee comments, final version to appear in Inventione

    Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri

    Get PDF
    Arabidopsis halleri is a well-known zinc (Zn) hyperaccumulator, but its status as a cadmium (Cd) hyperaccumulator is less certain. Here, we investigated whether A. halleri can hyperaccumulate Cd and whether Cd is transported via the Zn pathway. Growth and Cd and Zn uptake were determined in hydroponic experiments with different Cd and Zn concentrations. Short-term uptake and root-to-shoot transport were measured with radioactive Cd-109 and Zn-65 labelling. A. halleri accumulated > 1000 mg Cd kg(-1) in shoot dry weight at external Cd concentrations >= 5 mu m>, but the short-term uptake rate of Cd-109 was much lower than that of Zn-65. Zinc inhibited short-term Cd-109 uptake kinetics and root-to-shoot translocation, as well as long-term Cd accumulation in shoots. Uptake of Cd-109 and Zn-65 were up-regulated, respectively, by low iron (Fe) or Zn status. A. halleri was much less tolerant to Cd than to Zn. We conclude that A. halleri is able to hyperaccumulate Cd partly, at least, through the Zn pathway, but the mechanisms responsible for cellular Zn tolerance cannot detoxify Cd effectively

    On the static solutions in gravity with massive scalar field in three dimensions

    Full text link
    We investigate circularly symmetric static solutions in three-dimensional gravity with a minimally coupled massive scalar field. We integrate numerically the field equations assuming asymptotic flatness, where black holes do not exist and a naked singularity is present. We also give a brief review on the massless cases with cosmological constant.Comment: 11 pages, LaTeX, 1 Postscript figure. Some changes were don

    Quantum efficiency measurement system for large area CsI photodetectors

    Get PDF
    A proximity focusing freon/CsI RICH detector has been built for kaon physics at Thomas Jefferson National Accelerator Facility (TJNAF or Jefferson Lab), Hall A. The Cherenkov photons are detected by a UV photosensitive CsI film which has been obtained by vacuum evaporation. A dedicated evaporation facility for large area photocathodes has been built for this task. A measuring system has been built to allow the evaluation of the absolute quantum efficiency (QE) just after the evaporation. The evaporation facility is described here, as well as the quantum efficiency measurement device. Results of the QE on-line measurements, for the first time on large area photocathodes, are reported
    corecore