209 research outputs found

    Bacterial Invasion in Root Cementum and Radicular Dentin of Periodontally Diseased Teeth in Humans

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141919/1/jper0222.pd

    Scanning Electron Microscopy of Dentin Caries. Experimental in vitro Studies with Streptococcus Mutans

    Get PDF
    This study was performed to gain better insight into the mechanisms involved in carious destruction of human dentin by Streptococcus mutans. In particular, bacterial colonization of dentin surfaces and bacterial invasion in dentin were studied. Streptococcus mutans (S. mutans), strain NCTC 10449, was grown on sterile dentin blocks in a 10% CO2 atmosphere at 37°C. After 72, 120, 144 and 288 h of incubation the specimens were processed for scanning electron microscopic examination. The colonization of the dentinal surface progressed slowly and was nearly complete after 288 h. Invasion of S. mutans into the dentinal tubules was found occasionally and was limited to the initial 5 μm of the tubular lumen. The acid metabolites produced by S. mutans, caused lesions of the dentinal structures in the close proximity of the bacteria. From the results of this in vitro study it appears that carious destruction of exposed dentinal surfaces by S. mutans mainly occurs at the exposed dentin after it has been colonized by bacteria. Destruction of the deeper dentinal layers by bacteria invading the dentinal tubules may play a less important role. However, in the few cases where S. mutans invaded the dentinal tubules, rapid destruction of the peritubular dentin sheath occurred. In addition, the possibility remains that acid metabolites produced by S. mutans diffuse into the dentinal tubules and cause tissue damage in the deeper parts of the dentin

    RELIC: a novel dye-bias correction method for Illumina Methylation BeadChip

    Get PDF
    Supplementary_Material. This docx file contains all supplementary tables and supplementary figures. (DOCX 424 kb

    COPD and exercise: does it make a difference?

    Get PDF
    Physical activity is defined as any bodily movement produced by skeletal muscles which results in energy expenditure. Physical activity in daily life can be categorised into occupational, sports, conditioning, household, or other activities. Exercise is a subset of physical activity that is planned, structured, and repetitive and has as a final or an intermediate objective the improvement or maintenance of physical fitness [1]. According to international guidelines, exercise training, widely regarded as the cornerstone of pulmonary rehabilitation, is the best available means of improving muscle function and exercise tolerance in patients with chronic obstructive pulmonary disease (COPD) [2, 3]. It truly makes a difference in the life of patients with COPD. In this review, an overview is provided on the history of exercise training (as standalone intervention or as part of a comprehensive pulmonary rehabilitation programme), the state-of-the-art exercise training, exercise training in comorbid patients with COPD, and the impact of physical activity counselling in a clean air environment

    Recent exposure to ultrafine particles in school children alters miR-222 expression in the extracellular fraction of saliva

    Get PDF
    Background: Ultrafine particles (< 100 nm) are ubiquitous present in the air and may contribute to adverse cardiovascular effects. Exposure to air pollutants can alter miRNA expression, which can affect downstream signaling pathways. miRNAs are present both in the intracellular and extracellular environment. In adults, miR-222 and miR-146a were identified as associated with particulate matter exposure. However, there is little evidence of molecular effects of ambient air pollution in children. This study examined whether exposure to fine and ultrafine particulate matter (PM) is associated with changes in the extracellular content of miR-222 and miR-146a of children. Methods: Saliva was collected from 80 children at two different time points, circa 11 weeks apart and stabilized for RNA preservation. The extracellular fraction of saliva was obtained by means of differential centrifugation and ultracentrifugation. Expression levels of miR-222 and miR-146a were profiled by qPCR. We regressed the extracellular miRNA expression against recent exposure to ultrafine and fine particles measured at the school site using mixed models, while accounting for sex, age, BMI, passive smoking, maternal education, hours of television use, time of the day and day of the week. Results: Exposure to ultrafine particles (UFP) at the school site was positively associated with miR-222 expression in the extracellular fraction in saliva. For each IQR increase in particles in the class room (+8504 particles/cm(3)) or playground (+ 28776 particles/cm(3)), miR-222 was, respectively 23.5 % (95 % CI: 3.5 %-41.1 %; p = 0.021) or 29.9 % (95 % CI: 10.6 %-49.1 %; p = 0.0027) higher. No associations were found between miR-146a and recent exposure to fine and ultrafine particles. Conclusions: Our results suggest a possible epigenetic mechanism via which cells respond rapidly to small particles, as exemplified by miR-222 changes in the extracellular fraction of saliva

    Children’s screen time alters the expression of saliva extracellular miR-222 and miR-146a

    Get PDF
    An imbalance between energy uptake and energy expenditure is the most important reason for increasing trends in obesity starting from early in life. Extracellular miRNAs are expressed in all bodily fluids and their expression is influenced by a broad range of stimuli. We examined whether screen time, physical activity and BMI are associated with children's salivary extracellular miR-222 and miR-146a expression. In 80 children the extracellular fraction of saliva was obtained by means of differential centrifugation and ultracentrifugation. Expression levels of miR-222 and miR-146a were profiled by qPCR. We studied the association between children's salivary extracellular miRNA expression and screen time, physical activity and BMI using mixed models, while accounting for potential confounders. We found that higher screen time was positively associated with salivary extracellular miR-222 and miR-146a levels. On average, one hour more screen time use per week was associated with a 3.44% higher miR-222 (95% CI: 1.34 to 5.58; p = 0.002) and 1.84% higher miR-146a (95% CI: -0.04 to 3.75; p = 0.055) level in saliva. BMI and physical activity of the child were not significantly associated with either miR-222 or miR-146a. A sedentary behaviour, represented by screen time use in children, is associated with discernible changes in salivary expression of miR-146a and or miR-222. These miRNA targets may emerge attractive candidates to explore the role of these exposures in developmental processes of children's health

    Vascular Responses following Light Therapy: A Pilot Study with Healthy Volunteers

    Get PDF
    (1) Background: Studies have reported the effectiveness of light therapy in various medical conditions. Our pilot study aimed to assess the effect of Maharishi light therapy (MLT) on physiological parameters, such as the heart rate (HR), HR variability (HRV), blood pressure (BP), BP variability (BPV), and the retinal microvasculature of healthy participants; (2) Methodology: Thirty (14 males and 16 females) healthy, non-smoking participants between 23 and 71 years old (46 ± 18 years) were included in this randomized crossover study. Each participant was tested with a placebo (using LED light) and gem lights, 24 h apart. Hemodynamic parameters were recorded during the session, and 24 h heart rate and BP levels were assessed via mobile devices. Retinal vascular responses were captured with fundus images and the subsequent analysis of retinal vessel widths. A linear model, using repeated measures ANOVA, was used to compare the responses across the sexes and to assess the effect of the MLT; (3) Results: Changes in the central retinal artery equivalent (CRAE) (p < 0.001) and central retinal vein equivalent (CRVE) (p = 0.002) parameters were observed. CRAE and CRVE decreased under MLT and increased under the placebo condition from before to after. However, the baseline values of the participants already differed significantly before the application of any therapy, and the variation in the retinal vessel diameters was already large in the baseline measurements. This suggests that the observed effect results may only reflect naturally occurring fluctuations in the microcirculation and not the effect of MLT. Furthermore, no significant effects were observed in any other investigated parameters; (4) Conclusion: Our study with healthy participants finds significant changes in retinal parameters, but the biological variation in the baseline measurements was large to begin with. This suggests that the observed effect results only reflect naturally occurring fluctuations in the microcirculation and not the effect of MLT. However, in the future, larger studies in which MLT is applied for longer periods and/or in patients with different diseases could discover the physiological impacts of this type of therapy.publishedVersio
    corecore