1,052 research outputs found

    Credal Networks under Epistemic Irrelevance

    Get PDF
    A credal network under epistemic irrelevance is a generalised type of Bayesian network that relaxes its two main building blocks. On the one hand, the local probabilities are allowed to be partially specified. On the other hand, the assessments of independence do not have to hold exactly. Conceptually, these two features turn credal networks under epistemic irrelevance into a powerful alternative to Bayesian networks, offering a more flexible approach to graph-based multivariate uncertainty modelling. However, in practice, they have long been perceived as very hard to work with, both theoretically and computationally. The aim of this paper is to demonstrate that this perception is no longer justified. We provide a general introduction to credal networks under epistemic irrelevance, give an overview of the state of the art, and present several new theoretical results. Most importantly, we explain how these results can be combined to allow for the design of recursive inference methods. We provide numerous concrete examples of how this can be achieved, and use these to demonstrate that computing with credal networks under epistemic irrelevance is most definitely feasible, and in some cases even highly efficient. We also discuss several philosophical aspects, including the lack of symmetry, how to deal with probability zero, the interpretation of lower expectations, the axiomatic status of graphoid properties, and the difference between updating and conditioning

    First Steps Towards an Imprecise Poisson Process

    Get PDF
    The Poisson process is the most elementary continuous-time stochastic process that models a stream of repeating events. It is uniquely characterised by a single parameter called the rate. Instead of a single value for this rate, we here consider a rate interval and let it characterise two nested sets of stochastic processes. We call these two sets of stochastic process imprecise Poisson processes, explain why this is justified, and study the corresponding lower and upper (conditional) expectations. Besides a general theoretical framework, we also provide practical methods to compute lower and upper (conditional) expectations of functions that depend on the number of events at a single point in time.Comment: Extended pre-print of a paper accepted for presentation at ISIPTA 201

    Bounding inferences for large-scale continuous-time Markov chains : a new approach based on lumping and imprecise Markov chains

    Get PDF
    If the state space of a homogeneous continuous-time Markov chain is too large, making inferences becomes computationally infeasible. Fortunately, the state space of such a chain is usually too detailed for the inferences we are interested in, in the sense that a less detailed—smaller—state space suffices to unambiguously formalise the inference. However, in general this so-called lumped state space inhibits computing exact inferences because the corresponding dynamics are unknown and/or intractable to obtain. We address this issue by considering an imprecise continuous-time Markov chain. In this way, we are able to provide guaranteed lower and upper bounds for the inferences of interest, without suffering from the curse of dimensionality

    State sequence prediction in imprecise hidden Markov models

    Get PDF
    We present an efficient exact algorithm for estimating state sequences from outputs (or observations) in imprecise hidden Markov models (iHMM), where both the uncertainty linking one state to the next, and that linking a state to its output, are represented using coherent lower previsions. The notion of independence we associate with the credal network representing the iHMM is that of epistemic irrelevance. We consider as best estimates for state sequences the (Walley-Sen) maximal sequences for the posterior joint state model (conditioned on the observed output sequence), associated with a gain function that is the indicator of the state sequence. This corresponds to (and generalises) finding the state sequence with the highest posterior probability in HMMs with precise transition and output probabilities (pHMMs). We argue that the computational complexity is at worst quadratic in the length of the Markov chain, cubic in the number of states, and essentially linear in the number of maximal state sequences. For binary iHMMs, we investigate experimentally how the number of maximal state sequences depends on the model parameters

    First steps towards an imprecise Poisson process

    Get PDF
    The Poisson process is the most elementary continuous-time stochastic process that models a stream of repeating events. It is uniquely characterised by a single parameter called the rate. Instead of a single value for this rate, we here consider a rate interval and let it characterise two nested sets of stochastic processes. We call these two sets of stochastic process imprecise Poisson processes, explain why this is justified, and study the corresponding lower and upper (conditional) expectations. Besides a general theoretical framework, we also provide practical methods to compute lower and upper (conditional) expectations of functions that depend on the number of events at a single point in time

    Imprecise continuous-time Markov chains : efficient computational methods with guaranteed error bounds

    Get PDF
    Imprecise continuous-time Markov chains are a robust type of continuous-time Markov chains that allow for partially specified time-dependent parameters. Computing inferences for them requires the solution of a non-linear differential equation. As there is no general analytical expression for this solution, efficient numerical approximation methods are essential to the applicability of this model. We here improve the uniform approximation method of Krak et al. (2016) in two ways and propose a novel and more efficient adaptive approximation method. For ergodic chains, we also provide a method that allows us to approximate stationary distributions up to any desired maximal error

    Credal networks under epistemic irrelevance using sets of desirable gambles

    Get PDF
    We present a new approach to credal networks, which are graphical models that generalise Bayesian nets to deal with imprecise probabilities. Instead of applying the commonly used notion of strong independence, we replace it by the weaker notion of epistemic irrelevance. We show how assessments of epistemic irrelevance allow us to construct a global model out of given local uncertainty models, leading to an intuitive expression for the so-called irrelevant natural extension of a network. In contrast with Cozman (2000), who introduced this notion in terms of credal sets, our main results are presented using the language of sets of desirable gambles. This has allowed us to derive a number of useful properties of the irrelevant natural extension. It has powerful marginalisation properties and satisfies all graphoid properties but symmetry, both in their direct and reverse forms
    • …
    corecore