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Abstract

A credal network under epistemic irrelevance is a generalised type of Bayesian network that relaxes its two
main building blocks. On the one hand, the local probabilities are allowed to be partially specified. On the
other hand, the assessments of independence do not have to hold exactly. Conceptually, these two features
turn credal networks under epistemic irrelevance into a powerful alternative to Bayesian networks, offering a
more flexible approach to graph-based multivariate uncertainty modelling. However, in practice, they have
long been perceived as very hard to work with, both theoretically and computationally.

The aim of this paper is to demonstrate that this perception is no longer justified. We provide a general
introduction to credal networks under epistemic irrelevance, give an overview of the state of the art, and
present several new theoretical results. Most importantly, we explain how these results can be combined to
allow for the design of recursive inference methods. We provide numerous concrete examples of how this can
be achieved, and use these to demonstrate that computing with credal networks under epistemic irrelevance is
most definitely feasible, and in some cases even highly efficient. We also discuss several philosophical aspects,
including the lack of symmetry, how to deal with probability zero, the interpretation of lower expectations,
the axiomatic status of graphoid properties, and the difference between updating and conditioning.

Keywords: Credal networks, Epistemic irrelevance, Irrelevant natural extension, Sets of probabilities,
Lower expectation

1. Introduction

Bayesian networks [38] owe their succes to the main feature that all probabilistic graphical models have
in common: they are able to model the uncertainty that is associated with large multivariate problems in a
manageable way, by combining local uncertainty models with intuitive graph-based independence assump-
tions. For a Bayesian network, the independence assumptions are derived from a directed acyclic graph and
the local uncertainty models are probability distributions.

Credal networks [2, 11, 12] generalize this concept by replacing the local probability distributions with
closed convex sets of probability distributions, also called credal sets. In this way, they do not require the
exact specification of all the local probabilities, but allow the user to provide partial constraints on them,
such as intervals or inequalities. Depending on the type of credal network that is being considered, the
independence assumptions that are derived from the graph are also generalised, by replacing them with
weaker types of independence assessments.

This paper focusses on credal networks that adopt epistemic irrelevance as their notion of indepen-
dence, called credal networks under epistemic irrelevance. This type of credal network does not impose
independence in the usual sense, but instead replaces it with assessments of epistemic irrelevance. From a
probabilistic point of view, these assessments of epistemic irrelevance can be regarded as relaxed assumptions
of independence that allow for mild forms of correlation.
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To the best of our knowledgde, the concept of a credal network under epistemic irrelevance was first
introduced by Cozman [10], who then referred to it as a locally defined Quasi-Bayesian network. Now,
almost twenty years later, it is firmly established as one of the two main types of credal networks. However,
compared with the other main type, which adopts strong independence as its notion of independence, credal
networks under epistemic irrelevance have received considerably less attention. In particular, only very few
algorithms for credal networks under epistemic irrelevance have so far been developed.

The reason for this shortage of algorithms can be explained as follows. In a Bayesian network, as a
result of the independence assumptions that are imposed, the global probabilities of the network are a
product of the local ones. This factorisation formula is very well known, and lies at the heart of all Bayesian
network algorithms. Since credal networks under strong independence are essentially just sets of Bayesian
networks, they inherit this factorisation formula. For this reason, algorithms for credal networks under
strong independence can developed by starting from an existing algorithm for Bayesian networks and then
adapting it to the context of sets of probabilities by adding an extra optimisation step; see Reference [2] for
a recent overview of related literature. Although this optimisation step is highly combinatoric and therefore
often inefficient, this approach does allow for the development of efficient approximate algorithms. For credal
networks under epistemic irrelevance, the situation is more complicated. Basically, the main issue is that
the factorisation formula of Bayesian networks no longer holds. Therefore, it is not possible to start from
existing algorithms for Bayesian networks and adapt them. Instead, new algorithmic techniques need to be
developed from scratch.

The good news though is that once these theoretical challenges are overcome, the resulting algorithms
are often surprisingly efficient. Most notably, for credal networks under epistemic irrelevance of which the
graphical structure is a tree, there are several types of inference problems that can be solved in polynomial
time [5, 21, 24]. This is quite remarkable. For example, it is worth noting that for the algorithm in
Reference [24], the corresponding inference problem in credal networks under strong independence is known
to be NP-hard [34]. However, despite these promising results, the scope of the algorithms that have so far
been developed is rather limited. On the one hand, they require the graph of the network to be a tree. On
the other hand, they only consider particular types of inference problems.

The first important aim of this paper is to allow for this scope to be expanded. In order to achieve this,
we present a complete theoretical framework for the study of credal networks under epistemic irrelevance.
Furthermore, and perhaps most importantly, we demonstrate how this framework can be used to develop
new algorithms, for networks of which the graph is not required to be a tree, and for various types of
inference problems. Trough the use of numerous examples, we explain what are the crucial techniques that
lie at the heart of existing algorithms, and we show how these techniques can be extended to allow for the
design of new ones.

A crucial feature of our framework is that we express everything in terms of probabilities and expectations,
thereby remaining close to the approach that was taken in the first papers on credal networks under epistemic
irrelevance [10, 11, 23]. In contrast, most of the recent work on credal networks under epistemic irrelevance—
including some of our own—does not consider probabilities and expectations, but instead considers other,
closely related uncertainty models, such as lower previsions and sets of desirable gambles [5, 21, 22, 24]. On
the one hand, this change of perspective has been fruitful, because it has lead to the development of various
new theoretical properties. On the other hand, unfortunately, these alternative uncertainty models are not
well known within the Bayesian network community. As a direct result, recent work on credal networks
under epistemic irrelevance is rather inaccessible to this community.

The second aim of this paper, therefore, is to reintroduce credal networks under epistemic irrelevance
to the Bayesian network community, and to present the most recent theoretical developments in this field
in a way that is easily accessible, using the language of probabilities and expectations; lower previsions and
sets of desirable gambles are mentioned only in passing. Proofs are therefore not provided, because these do
require extensive use of these other frameworks for modelling uncertainty. For a more technical exposition
that does include proofs, the interested reader is referred to [17].

The remainder of this paper is organised as follows.
We start in Section 2 by providing a brief introduction to the basics of credal networks, discussing

in particular their graphical structure—a Directed Acyclic Graph (DAG)—and their local models—sets
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of probability mass functions, called credal sets. Next, in Section 3 and 4, we introduce three particular
types of credal networks. Credal networks under complete independence are defined in Section 3, together
with another very close related type of credal network, called credal networks under strong independence.
Section 4 then goes on to introduce our main topic of interest, which are credal networks under epistemic
irrelevance. We explain and illustrate some crucial differences with the other two types of credal networks,
and provide a formal definition for the corresponding joint uncertainty model, called the irrelevant natural
extension. Throughout these two sections, we also pay special attention to the treatment of probability zero,
by using full conditional probability measures as our basic uncertainty model.

From a practical point of view, regardless of the type of credal network that is being considered, the
main computational challenge is to obtain tight lower and upper bounds on expectations and probabilities.
Conveniently, as we explain in Section 5, it suffices to consider lower expectations, because upper expec-
tations and lower and upper probabilities can be obtained as special cases. Furthermore, as we will also
discuss, working directly with these bounds offers philosophical advantages, because they are compatible
with multiple interpretations. In the rest of the paper, we focus on the problem of how to compute lower
expectations, for the particular case of credal networks under epistemic irrelevance.

We start in Section 6 by showing how these lower expectations can be obtained as the solution of a linear
program, thereby providing a general-purpose method for computing them. Basically, we show that the
linear programming methods of Cozman remain valid even if the positivity conditions in Reference [11] are
dropped. Unfortunately, the size of the required linear programs is exponential in the size of the network,
and therefore, this direct approach only works for small networks.

Therefore, in Section 7, we develop alternative methods that consist in decomposing large inference
problems into several smaller sub-problems. In some cases, the remaining sub-problems are trivial local
optimisations. In other cases, they can be solved by applying the linear programming techniques of Section 6
to so-called sub-networks. This section also contains several examples, which we use to demonstrate how
the algorithms of De Cooman et al. [24] can be extended beyond the case of credal trees. Most importantly,
we present theoretical properties that can be used to generalise the methods in this section even further,
including marginalisation, factorisation and additivity results, and a law of iterated lower expectation.

In Section 8, we take a step back from all these computational techniques and study the separation
properties of credal networks under epistemic irrelevance. In particular, we show that for the irrelevant
natural extension of a credal network under epistemic irrelevance, similarly to how d-separation implies
independence in a Bayesian network, AD-separation now implies epistemic irrelevance. We also use this
result to start a discussion on the relevance of graphoid properties, and on whether or not they should be
regarded as axioms.

Finally, in Section 9, we explain the subtle difference between updating and conditioning and argue how,
in the context of updating, it makes sense to replace the conditional lower expectations that we have so far
considered by those that correspond to what is called the irrelevant regular extension. We also explain how
Lavine’s bracketing algorithm can be used to compute updated and conditional lower expectations, and we
provide several examples to demonstrate the feasibility of such an approach in the context of credal networks
under epistemic irrelevance.

2. The Basics of Credal Networks

Basically, a credal network is just a special type of multivariate uncertainty model for a finite set of
variables {Xs}s∈G, with G some finite index set. Each of the variables Xs takes values xs in a finite set Xs
and, for any S ⊆ G, we use XS to denote the vector that consists of the variables {Xs}s∈S , which takes
values xS in XS := ×s∈SXs.

In a credal network, just like in a Bayesian network, the variables {Xs}s∈G are identified with their indices
s ∈ G. These indices are then interpreted as the nodes of a directed acyclic graph (DAG)—see Figure 1
for an example—and the arrows of this graph are taken to represent (in)dependencies among the individual
variables. Finally, these assessments of independence are combined with local uncertainty models, and in
this way, a global uncertainty model for XG is defined. The main difference with a Bayesian network is that
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G = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Π (5) = {3}
C(5) = {7, 8}
D(5) = {7, 8, 9, 10}
N(5) = {1, 2, 4, 6}

ΠN(5) = {1, 2, 3, 4, 6}

Figure 1: Example of a directed acyclic graph (DAG).

the local and global uncertainty models are now sets of probability distributions, and that the interpretation
of independence may no longer coincide with the traditional one.

In order to formalize this idea, we need some basic graph-theoretic concepts, which are illustrated in
Figure 1. For two nodes s and u in G, if there is a directed edge from s to u, we denote this as s→ u and
say that s is a parent of u and u is a child of s. For any node s, its set of parents is denoted by Π (s) and its
set of children by C(s). A node s is said to precede a node v, denoted by s v v, if it is possible to start from
s and follow the edges of the graph along their direction to reach v. If s v v and s 6= v, we say that s strictly
precedes v and write s @ v. For any node s, we call D(s) := {v ∈ G : s @ v} its set of descendants and
N(s) := G \ (Π (s) ∪ {s} ∪D(s)) its set of non-parent non-descendants. We also use the shorthand notation
ΠN(s) := Π (s) ∪N(s) = G \ ({s} ∪D(s)) to refer to what we call the non-descendants of s. By definition,
the graph is assumed to be acyclic. Informally, this means that it is not possible to start in a node, follow
the edges along their direction, and end up in the same node one started out from. More technically, this
means that there are no two nodes s, v ∈ G such that s @ v and v @ s. With this terminology in place, we
can now formally introduce the two main building blocks of a credal network, which are local uncertainty
models and assessments of independence.

The basic premise of a credal network is that it is sometimes unrealistic to provide exact values for
the local probabilities P (xs | xΠ (s)) that are required to specify a Bayesian network. Therefore, in those
cases, the local uncertainty models of a credal network are taken to be sets of probability distributions. For
every variable Xs and every instantiation xΠ (s) of its parent variables XΠ (s), the associated local uncertainty
model is a setMs|xΠ(s)

of probability mass functions on Xs, the elements of which are regarded as candidates
for some ideal—but unknown—conditional probability mass function P (Xs | xΠ (s)), in the sense that

P (Xs | xΠ (s)) ∈Ms|xΠ(s)
for all s ∈ G and xΠ (s) ∈ XΠ (s). (1)

Most authors require the sets Ms|xΠ(s)
to be closed and convex, and then call them credal sets; we will

follow this convention here as well. In practice, these local credal sets can be obtained in various ways [49];
they can for example be elicited from experts [39], learned from data [7, 50], or constructed as some type of
neighbourhood model [6].

Mathematically, since the local credal sets are closed convex subsets of the—bounded—set ΣXs of all
probability mass functions on Xs, they can be represented using either constraints or vertices. A vertex-based
representation consists in characterising Ms|xΠ(s)

by means of its set of extreme points

ExtMs|xΠ(s)
:=
{
p ∈Ms|xΠ(s)

: p /∈ Conv
(
Ms|xΠ(s)

\ {p}
)}
,

where Conv denotes the convex hull. This set of extreme points ExtMs|xΠ(s)
is the smallest subset of

Ms|xΠ(s)
that hasMs|xΠ(s)

as its convex hull. If a credal set has a finite number of extreme points, then we
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say that it is finitely generated. Such credal sets are polytopes of which the vertices are the extreme points.
A constraint-based representation of a credal set consists in characterising it as the largest set of probability
mass functions on Xs that satisfies a set of linear constraints:

p ∈Ms|xΠ(s)
⇔ p ∈ ΣXs

and (∀i ∈ I)
∑
xs∈Xs

p(xs)αi(xs) ≥ βi, (2)

where I is a—possibly infinite—index set and, for all i ∈ I and xs ∈ Xs, αi(xs) and βi are real numbers. A
credal set is finitely generated if and only if it admits a constrained-based representation that requires only
a finite number of constraints.1 In this finitely generated case, the conversion between vertex-based and
constrained-based representations can be achieved using various algorithms.2 Unfortunately, the complexity
of these algorithms will in general be exponential in the number of vertices and/or constraints. However, in
practice, for the local credal sets of a credal network, these conversions tend to be feasible.

In the remainder of this paper, we assume that the local credal sets Ms|xΠ(s)
are given; they constitute

the first main building block of the credal networks that we will consider. Our theoretical developments do
not require these local credal sets to be finitely generated. However, in order to apply our results in practice,
such an assumption will nevertheless sometimes be required, in which case we will mention it explicitly.

The second main building block of the credal networks that we consider is a collection of independence
assessments. As in Bayesian networks, these independence assessments are inferred from the graph of the
network in the following way: every variable Xs is assumed to be conditionally independent of its non-parent
non-descendants XN(s) given its parents XΠ (s). However, in the context of sets of probability distributions,
there is no consensus on what is meant here by independence. Depending on the notion of independence
that is chosen, a different type of credal network is obtained.

3. Credal Networks under Complete Independence

The most straightforward way to define independence for a set of distributions, is to simply impose
the usual notion of independence, which we will henceforth call stochastic independence, to each of its
elements P (XG). This type of independence—element-wise stochastic independence—is called complete
independence [13, 41]. In the case of credal networks, this results in the following assessment:

P (Xs | xΠN(s)) = P (Xs | xΠ (s)) for all s ∈ G and xΠN(s) ∈ XΠN(s). (3)

Conventionally, the conditional probabilities in this expression are taken to be derived from P (XG) through
Bayes’s rule. However, this creates issues in the case of probability zero; for example, if P (xΠN(s)) = 0,
then P (Xs | xΠN(s)) is ill-defined.

In order to avoid these issues in an elegant yet rigorous way, we will not regard conditional probabilities
as derived concepts that are obtained through Bayes’s rule, but rather as primitive notions that are part of
a (full) conditional probability measure [27].

Definition 1. A full conditional probability measure P on a finite set Ω is a map

P : P(Ω)× P∅(Ω)→ R : (A,B)→ P (A |B),

with P∅(Ω) := P(Ω) \ {∅}, such that for any A,C ∈ P(Ω) and B ∈ P∅(Ω):

F1: P ( · |B) is a probability measure on P(Ω) with P (B|B) = 1;

F2: P (A ∩ C|B) = P (A|C ∩B)P (C|B) if C ∩B 6= ∅.

1This equivalence follows from the fact that a compact convex set can be specified as the intersection of a finite number of
closed half spaces if and only if it is the convex hull of a finite number of vertices [29, Theorem 3.1.3].

2Constructing a vertex-based representation is called the vertex enumeration problem, whereas constructing a constrained-
based representation is called the facet enumeration problem.
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The axioms F1 and F2 correspond to the usual rules of probability. The only difference is that Bayes’s
rule—F2—does not define conditional probabilities by means of division, but instead regards them as prim-
itive notions and requires them to satisfy a product rule.

In the case of a credal network, we model the uncertainty about XG by means of a—possibly partially
specified—full conditional probability measure P on XG. For any event A ∈ P(XG) and any non-empty event
B ∈ P∅(XG), P (A|B) is the probability of A conditional on B and P (A) := P (A|XG) is the (unconditional)
probability of A. We will mostly focus on events of the form {zG ∈ XG : zS = xS}, with S ⊆ G; for ease
of notation, we denote these events as xS . The events xs, xΠ (s), xΠN(s), xG and x∅ = XG correspond to
special cases.

Within this framework, Equation (3) is now simply a constraint on the full conditional probability
measure P and does not require—nor suffers from—divisions by zero. As is very well known from the
theory of Bayesian networks, this constraint implies that the unconditional global probabilities P (xG) are
completely determined by the local probabilities P (xs | xΠ (s)):

P (xG) =
∏
s∈G

P (xs | xΠ (s)) for all xG ∈ XG. (4)

This is not necessarily true for conditional probabilities. For example, there may be some S, T ⊆ G, xS ∈ XS
and xT ∈ XT such that P (xS | xT ) is not uniquely determined by Equation (3) and the local probabilities.
However, this is usually ignored; the theory of Bayesian networks focusses on cases where P (xT ) > 0,
which guarantees that P (xS | xT ) can be computed by means of Bayes’s rule—F2. This restricted focus is
unfortunate because, even if xT has probability zero, P (xS | xT ) is often still uniquely determined by the
local probabilities and Equation (3).

In any case, for credal networks, probability zero is not the only source of non-uniqueness. Indeed, the
local probabilities may themselves not be unique, because Equation (1) will in general—unless all the local
credal sets are singletons—only impose partial constraints on the local probabilities. Due to this inherent
non-uniqueness, a credal network does not correspond to a single full conditional probability measure, but
rather to a set of them. We will denote such a set of full conditional probability measures on XG by FG,
and for any B ∈ P∅(XG) and any S ⊆ G, we will then use FG(XS |B) to refer to the set of probability mass
functions {P (XS | B) : P ∈ FG}. The sets FG(Xs | xΠ (s)), FG(Xs | xΠN(s)) and FG(XG) := FG(XG | XG)
correspond to important special cases.

The largest set of (full conditional) probability measures that is compatible with the defining constraints
of a credal network is called its extension. For a credal network under complete independence, these defining
constraints are Equations (1) and (3), and the corresponding extension is called the complete extension. We
will denote this complete extension by Fcom

G . Clearly, if we let F∗G be the set of all full conditional probability
measures on XG, then Fcom

G is given by

Fcom
G =

{
P ∈ F∗G :

(
∀s ∈ G

) (
∀xΠN(s) ∈ XΠN(s)

)
P (Xs | xΠN(s)) = P (Xs | xΠ (s)) ∈Ms|xΠ(s)

}
. (5)

If we make abstraction of the ‘full conditional’ aspects that we have added, and focus on the unconditional
part Fcom

G (XG), then this complete extension is simply the set of all Bayesian networks whose local prob-
ability mass functions P (Xs | xΠ (s)) take values in the local credal sets Ms|xΠ(s)

. This approach is highly
intuitive if one is convinced that the uncertainty about XG can be modelled by means of a single Bayesian
network and, for some reason, the required local probability mass functions are not exactly known, but are
only partially specified. It seems reasonable to model this type of situation by means of a set of Bayesian
models, and it should therefore not be surprising that credal networks under complete independence were
the first type of credal network to be considered; see [28]. In fact, at that point in time, since there were no
other types yet, credal networks under complete independence were simply called credal networks.

Nevertheless, today, rather surprisingly, credal networks under complete independence are almost never
considered. Instead, the majority of work on credal networks considers what are called credal networks
under strong independence. We will not go into details here; for our present purposes, it suffices to know
that the unconditional part F str

G (XG) of the extension of a credal network under strong independence, which
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1 2 3

G = {1, 2, 3}

Π (1) = ∅
N(1) = ∅

ΠN(1) = ∅

Π (2) = {1}
N(2) = ∅

ΠN(2) = {1}

Π (3) = {2}
N(3) = {1}

ΠN(3) = {1, 2}

Figure 2: The DAG of an imprecise Markov chain with three nodes.

is called the strong extension of the network, is equal to the convex hull of the unconditional part Fcom
G (XG)

of the complete extension. Given the choice between these two extensions, I favour the complete extension,
because of its clear and intuitive sensitivity analysis interpretation, which the strong extension does not
have. I fail to understand why most authors prefer the strong extension instead. In any case, the choice
is mainly a philosophical one, because in practice, there is little difference between the two approaches.
Essentially, Fagiuoli and Zaffalon [28, Theorem 5] already showed that for the vast majority of commonly
considered parameters of interest—such as (conditional) lower and upper probabilities and expectations—it
makes no difference whether we compute them with respect to the complete extension or its convex hull—
the strong extension. Therefore, existing algorithms that have been developed for strong extensions can be
immediately applied to complete extensions as well.

4. Credal Networks under Epistemic Irrelevance

In this paper, we do not impose complete or strong independence, but instead impose the following
assessments of epistemic irrelevance:

FG(Xs | xΠ (s)) = FG(Xs | xΠN(s)) for all s ∈ G and xΠN(s) ∈ XΠN(s). (6)

For every s ∈ G, this assessment requires that, conditional on XΠ (s), XN(s) should be epistemically irrelevant
to Xs. The idea here is that since we are modelling uncertainty by means of sets of (full conditional)
probability measures, independence should be a statement about such sets, not about the individual elements
of these sets. Equation (6) imposes that given the value xΠ (s) of its parents, our beliefs about the variable
Xs remain identical if we are also given the value xN(s) of its non-parent non-descendants. The only
difference with the more conventional notions of—stochastic, complete or strong—independence lies in the
fact that beliefs are now no longer identified with individual probability distributions, but rather with the
information that is available about these distributions, that is, with sets of probabilities—or, equivalently,
with constraints on probabilities.

Example 1. Consider a credal network whose DAG is depicted in Figure 2, which is an imprecise Markov
chain [25] of length three. In this case, the epistemic irrelevance constraints in Equation (6) are trivially
satisfied for s = 1 and s = 2, because for those two nodes, Π (s) = ΠN(s). For s = 3, we get the following
assessment:

FG(X3 | x2) = FG(X3 | x2, x1) for all x2 ∈ X2 and x1 ∈ X1. (7)

What this assessment says is that the probability mass functions P (X3 | x2) and P (X3 | x2, x1) take values in
the same set of probability mass functions—or, equivalently, that they satisfy the same constraints. It does
not say however that they are equal: P (X3 | x2) and P (X3 | x2, x1) are not forced to be identical. ♦

As illustrated in this example, an assessment of epistemic irrelevance does not imply stochastic indepen-
dence: P (Xs | xΠN(s)) does not need to be equal to P (Xs | xΠ (s)), and can furthermore depend on xN(s) in
arbitrary ways. However, epistemic irrelevance does constrain the extent to which P (Xs | xΠN(s)) can differ
from P (Xs | xΠ (s)), because it requires that they should both belong to the same set. In this sense, epis-
temic irrelevance imposes a notion of ‘almost’ stochastic independence, which, in those applications where
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1 2

G = {1, 2}

Π (1) = ∅
N(1) = {2}

ΠN(1) = {2}

Π (2) = ∅
N(2) = {1}

ΠN(2) = {1}

Figure 3: The DAG of a credal network with two disconnected nodes.

stochastic independence is an approximation that is imposed out of mathematical convenience, provides a
more realistic alternative.

Together, the assessments of epistemic irrelevance in Equation (6) and the constraints that are imposed
by the local credal sets in Equation (1) are the two main building blocks of what is called a credal network
under epistemic irrelevance. In the context of sets of full conditional probability measures, the latter—that
is, Equation (1)—can be reformulated as follows:

FG(Xs | xΠ (s)) ⊆Ms|xΠ(s)
for all s ∈ G and xΠ (s) ∈ XΠ (s). (8)

The largest set FG of full conditional probability measures on XG that is compatible with a credal network
under epistemic irrelevance—that satisfies Equations (6) and (8)—is called the irrelevant natural extension
of the credal network. We will denote this extension by F irr

G . As shown in [11] under strict positivity
conditions, and more generally in [17], F irr

G is given by

F irr
G =

{
P ∈ F∗G :

(
∀s ∈ G

) (
∀xΠN(s) ∈ XΠN(s)

)
P (Xs | xΠN(s)) ∈Ms|xΠ(s)

}
. (9)

If all the local credal setsMs|xΠ(s)
are singletons, Equation (8) implies that FG(Xs | xΠ (s)) contains only

a single probability mass function. Therefore, in this particular case, Equations (6) and (3) will be equivalent,
and F irr

G and Fcom
G will coincide. However, in most other cases, as can be seen by comparing Equations (5)

and (9), the complete extension Fcom
G will be a strict subset of the irrelevant natural extension F irr

G . In
fact, it can easily be shown that Fcom

G satisfies all the epistemic irrelevance assessments in Equation (6).
However, as we already illustrated in Example 1, the converse is usually not true because the full conditional
probability measures in F irr

G are not forced to satisfy Equation (3). The full conditional probability measures
that do not satisfy Equation (3) are exactly the ones that belong to F irr

G \ Fcom
G . The following example

provides a more concrete illustration of this crucial difference between F irr
G and Fcom

G .

Example 2. Consider a credal network whose DAG consists of two disconnected nodes, as depicted in
Figure 3. For each of the two nodes s ∈ G = {1, 2}, the corresponding variable Xs assumes values in its
state space Xs and has an associated local uncertainty model in the form of a credal setMs, which is a closed
and convex set of probability mass functions on Xs.3 By applying Equation (9), we find that the irrelevant
natural extension of such a network is given by

F irr
{1,2} =

{
P ∈ F∗{1,2} :

(
∀x2 ∈ X2

)
P (X1 | x2) ∈M1 and

(
∀x1 ∈ X1

)
P (X2 | x1) ∈M2

}
. (10)

In order to better understand this expression, we will in the remainder of this example focus on the case
where X1 and X2 are both binary, with X1 = {h1, t1} and X2 = {h2, t2}.

What makes a credal set Ms on such a binary state space Xs = {hs, ts} particularly elegant, is that it
can be uniquely characterised by the lower and upper probability of one of its two states. For example, if we
consider the lower and upper probability of hs, as defined by

p(hs) := min{p(hs) : p ∈Ms} and p(hs) := max{p(hs) : p ∈Ms},

3Since in this particular case, Π (s) = ∅, we can omit xΠ (s) from the notation, by defining Ms :=Ms|xΠ(s)
.
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then Ms is the largest set of probability mass functions on Xs such that p(hs) complies with these bounds,
in the sense that

p ∈Ms ⇔
(
p ∈ ΣXs

and p(hs) ∈
[
p(hs), p(hs)

] )
. (11)

Of course, by symmetry, this is also true if we replace hs by ts. The reason why these two characterisations
are equivalent is the unitary constraint p(hs) + p(ts) = 1: as a direct consequence of this unitary constraint,
it follows that p(ts) = 1− p(hs) and p(ts) = 1− p(hs), which in turn implies that p(hs) ≤ p(hs) ≤ p(hs) is
equivalent to p(ts) ≤ p(ts) ≤ p(ts).

By combining Equations (10) and (11), we find that in this binary case, the irrelevant natural extension
F irr
{1,2} is the set of all full conditional probability measures P ∈ F∗{1,2} on XG = X1 ×X2 such that

P (h1 | h2) ∈
[
p(h1), p(h1)

]
and P (h1 | t2) ∈

[
p(h1), p(h1)

]
and

P (h2 | h1) ∈
[
p(h2), p(h2)

]
and P (h2 | t1) ∈

[
p(h2), p(h2)

]
,

which is completely determined by four numbers: p(h1), p(h1), p(h2) and p(h2).
For the sake of this example, let us assume that these four numbers are equal to 1/4, 3/4, 1/4 and 3/4,

respectively. The corresponding irrelevant natural extension F irr
{1,2} is then the set of all full conditional

probability measures P ∈ F∗{1,2} on XG = X1 ×X2 such that

P (h1 | h2) ∈
[
1/4, 3/4

]
, P (h1 | t2) ∈

[
1/4, 3/4

]
, P (h2 | h1) ∈

[
1/4, 3/4

]
and P (h2 | t1) ∈

[
1/4, 3/4

]
. (12)

One example of such a full conditional probability measure is the one that has the following joint probability
values:

P (h1, h2) = 1/8, P (h1, t2) = 3/8, P (t1, h2) = 3/8 and P (t1, t2) = 1/8. (13)

Since all these probabilities are strictly positive, they determine a unique full conditional probability measure
on XG = X1 × X2 of which, for all A ∈ P(XG) and B ∈ P∅(XG), P (A|B) can be derived from F1, F2 and
Equation (13).4 In particular, we find that P (h1) = P (t1) = P (h2) = P (t2) = 1/2 and therefore, that

P (h1 | h2) = 1/4, P (h1 | t2) = 3/4, P (h2 | h1) = 1/4 and P (h2 | t1) = 3/4.

On the one hand, this implies that P satisfies Equation (12), and therefore, that it is indeed an element
of F irr

{1,2}. On the other hand, it also illustrates that P fails Equation (3), and therefore, that it does not

belong to Fcom
{1,2}. For example, we find that P (h1|h2) 6= P (h1), or equivalently—since P (h2) > 0—that

P (h1, h2) 6= P (h1)P (h2), which implies that, according to P , X1 and X2 are not independent. ♦

In the example above, the epistemic irrelevance assessments that are imposed by the graph are symmetric:
X1 is epistemically irrelevant to X2, and vice versa. However, this is not always the case. For example, in
the imprecise Markov chain in Example 1, conditional on X2, the graph of the network imposes that X1

should be epistemically irrelevant to X3, but not the other way around. For a standard—precise—Markov
chain, where epistemic irrelevance is replaced by stochastic independence, these two assessments would be
equivalent, because stochastic independence is symmetric.5 However, this is not the case for epistemic
irrelevance, because it is an intrinsicly asymmetric assessment [9]. At first sight, this asymmetry may seem
very peculiar, and perhaps even undesired. However, as we are about to argue, this aspect is not strange at
all and is in fact very natural, for the following reasons.

4This would not be true if, for example, P (h1, h2) = P (h1, t2) = 0 and P (t1, h2) = P (t1, t2) = 1/2. In that case, since
P (h1) = P (h1, h2) + P (h1, t2) = 0, P (h2|h1) would not be uniquely determined by Bayes’ rule—F2.

5Provided that all the relevant conditional events have a strictly positive probability. Otherwise, depending on the specific
definition of (stochastic) independence that is adopted, symmetry may still fail. In fact, in the presence of conditioning events
with probability zero, our definition of stochastic independence—see Equation (3)—is asymmetric.
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First of all, there simply seems to be no fundamental reason why an assessment of epistemic irrelevance
should lead us to adopt the reverse version. As Dawid [16] put it: “The desirability of the symmetry property
is not so obvious: if learning Y is irrelevant to X, must it follow that learning X is irrelevant to Y ?”. We
agree with Dawid that this is indeed not obvious, and that therefore, there is no reason why it should be
imposed by definition. Of course, this does not exclude that there might be instances where it makes sense
to impose mutual irrelevance. In fact, as we have seen in Example 2, we will sometimes do so.

Secondly, the assessments of epistemic irrelevance that we make—in the specific direction that we make
them—have an intuitive meaning in terms of the local models that we introduced in the previous section. For
example, Equation (6) is not just an assessment of epistemic irrelevance. In combination with Equation (8),
it can also be interpreted as an additional collection of direct assessments: for any xΠN(s), it implies hat
FG(Xs | xΠN(s)) should be a subset ofMs|xΠ(s)

. Basically, the effect of our epistemic irrelevance assessments
is therefore that the local assessments are duplicated and applied to a larger class of conditional distributions.

Thirdly, to a practitioner who constructs a credal—or Bayesian—network, the direction of the arrows
matters intuitively. Suppose for example that in Example 1, X1 represents whether or not someone is a
smoker, X2 represents whether or not someone has lung cancer and X3 represents whether or not some
medical test indicates that the person has lung cancer. Then most people would put the edges in Figure 2
as we have put them, in that particular direction, and would feel that changing the direction would alter
the meaning of the assessment. Nevertheless, in a Bayesian network, because stochastic independence is
symmetric, these two graphs—ours and the one where the arrows are reversed—correspond to the same
assessments of independence. In technical parlance: they are Markov-equivalent. For credal networks under
epistemic irrelevance, no such equivalence is present: since epistemic irrelevance is an asymmetric notion
of independence, graphs that are Markov-equivalent in the Bayesian network sense can lead to different
assessments of epistemic irrelevance.

The intuitive philosophical difference between Markov-equivalent graphs that is perceived by users of
Bayesian networks is often associated with causality. As Shafer [44] put it: “we need a way to give mathe-
matical and philosophical content to the differences between Markov-equivalent graphs, differences that are
none the less real to practitioners for the fact that they are not expressed by conditional independence”.
The theory of causal networks [31, Chapter 21] does exactly that: although it is based on the theory of
Bayesian networks, it differentiates between Markov equivalent graphs, both mathematically and philosoph-
ically. However, as we have just seen, causal networks are not the only type of networks that are capable of
doing so. They share these features with credal networks under epistemic irrelevance.

5. Lower expectations and their interpretations

From a practical point of view, the main object of interest is usually not the irrelevant natural extension
F irr
G —or the complete extension Fcom

G —itself, but rather the corresponding bounds on some parameters of
interest, such as probabilities and expected values. The most important such bounds are tight lower and
upper bounds on conditional expectations E(f(XS) |B) :=

∑
zS∈XS

f(zS)P (zS |B), where f belongs to the
set G(XS) of all real-valued functions on XS , with S a subset of G, and where B ∈ P∅(XG) is a non-empty
event. The tightest lower bound on this conditional expectation is called the lower expectation of f . For
any non-empty set FG of full conditional probability measures P on XG, it is defined by6

EG(f(XS) |B) := inf {E(f(XS) |B) : P ∈ FG} . (14)

The upper expectation EG(f(XG) |B) can be defined analogously, simply by replacing the infimum with a
supremum. However, because EG(f(XS) |B) = −EG(−f(XS) |B), it suffices to focus on lower expectations.

6If FG is equal to the irrelevant natural extension F irr
G , the infimum in this expression can be replaced by a minimum. This

follows from the fact that (a) Eirr
G (·|·) is a coherent conditional lower prevision whose dominating conditional linear previsions

are in one-to-one correspondence with the full conditional probability measures in F irr
G —see Reference [17, Chapter 5]—and

(b) for any element of its domain, the value of such a coherent conditional lower prevision is always attained by at least one of
its dominating conditional linear previsions—see the (end of the) proof of [53, Theorem 2].
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Lower and upper probabilities are defined similarly, but these too will not be our main focus, because they
correspond to the special case where f is the indicator IA of an event A ∈ P(XG), defined by IA(xG) := 1 if
xG ∈ A and IA(xG) := 0 otherwise. Indeed, since P (A |B) is clearly equal to E(IA(XG) |B), it follows that
the conditional lower probability PG(A | B) := inf {P (A |B) : P ∈ FG} is equal to EG(IA(XG) | B), and
similarly for the conditional upper probability PG(A |B). Unconditional lower and upper expectations and
probabilities are obtained by conditioning on the certain event B = XG, in which case we drop this trivial
conditioning event XG from the notation, for example by writing EG(f(XG)) instead of EG(f(XG) | XG),
or writing PG(A) instead of PG(A | XG).

Since, as we have just seen, upper expectations and lower and upper probabilities can all be regarded
as special cases of lower expectations, we can focus on the latter without loss of generality. Therefore,
in the remainder of this paper, we will focus on studying and computing lower expectations of the form
EG(f(XS) |B). Usually, the conditional event B will be of the form xT , with T ⊆ G and xT ∈ XT . In that
case, we have the following simple yet very useful property:

EG(f(XS) | xT ) = EG(f(XS\T , xS∩T ) | xT ), (15)

which follows directly from the definition of EG(f(XS) | xT ) and the fact that, for every zS ∈ XS such that
zS∩T 6= xS∩T , P (zS | xT ) = 0 because of F1. If xT is not fixed, we write EG(f(XS) |XT ) and interpret this
as a real-valued function on XT , defined for all xT ∈ XT by Equation (15).

All of the definitions, results and conventions that we have so far introduced in this section can be applied
to any non-empty set FG of full conditional probability measures on XG. Hence, in particular, they can also
be applied to the irrelevant natural extension F irr

G of a credal network, as well as to the complete extension
Fcom
G . In the former case, we will denote the corresponding lower expectations as Eirr

G (f(XS) |B), whereas
in the latter, we will use Ecom

G (f(XS) |B) instead.
In this context of credal networks, in addition to the global lower expectations that we have just in-

troduced, it is natural to consider local lower expectations as well, which are the lower expectations that
correspond to the local credal sets. For any s ∈ G and xΠ (s) ∈ XΠ (s), this local lower expectation Es|xΠ(s)

is defined by7

Es|xΠ(s)
(f) := min

{∑
x∈Xs

f(x)p(x) : p ∈Ms|xΠ(s)

}
for all f ∈ G(Xs). (16)

The local upper expectation Es|xΠ(s)
can be defined analogously, by replacing the minimum with a maxi-

mum. However, as before, it suffices to focus on lower expectations because Es|xΠ(s)
(f) = −Es|xΠ(s)

(−f).
Similarly, local lower and upper probabilities also correspond to special cases: for all A ⊆ Xs, we have
that P s|xΠ(s)

(A) := Es|xΠ(s)
(IA) and P s|xΠ(s)

(A) := Es|xΠ(s)
(IA). Computing local lower expectations—

—and therefore also local upper expectations and local lower and upper probabilities—can be done using
either of the following two approaches, which, in practice, are only feasible if Ms|xΠ(s)

is finitely generated.
The first approach consists in altering Equation (16), by replacing Ms|xΠ(s)

with its set of extreme points
ExtMs|xΠ(s)

. Since Ms|xΠ(s)
is a compact set, this replacement will not change the result of the computa-

tion. Furthermore, if Ms|xΠ(s)
is finitely generated, we are now left with the trivial problem of finding the

minimum of a finite number of values. The second approach is to express the inclusion in Equation (16)
in terms of the constraints in Equation (2). If Ms|xΠ(s)

is finitely generated, this reduces the problem to a
linear optimisation problem, which can then be solved by means of standard linear programming methods.
In the remainder of this paper, we will assume that the local lower expectation operators Es|xΠ(s)

—and
therefore also the corresponding upper expectations and lower and upper probabilities—can be evaluated
efficiently. In practice, for finitely generated models, this will usually be the case.

The interesting question though is not how to compute these local lower expectations, but rather how to
compute the global lower expecations Eirr

G (f(XS) |B) and Ecom
G (f(XS) |B) that correspond to the irrelevant

7The minimum in this expression is well defined because Ms|xΠ(s)
is assumed to be closed.
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natural extension or complete extension of a credal network. For most inferences, that is, for most choices
of f(XS) and B, Eirr

G (f(XS) | B) and Ecom
G (f(XS) | B) will not be equal and—since Fcom

G is a subset of
F irr
G —the former will then be strictly lower than the latter. However, there is one important simple special

case for which they do coincide, which is when S = {s} and B = (xΠ (S), xT ), with T ⊆ N(s), xΠ (S) ∈ XΠ (S)

and xT ∈ XT . In that case, the two types of global lower expectations that we consider both reduce to their
common local lower expectation, in the sense that

Eirr
G (f(Xs) | xΠ (s), xT ) = Ecom

G (f(Xs) | xΠ (s), xT ) = Es|xΠ(s)
(f) for all f ∈ G(Xs). (17)

There are also other—less trivial—types of inferences for which Eirr
G and Ecom

G coincide; see for example
Examples 6, 8 and 14. However, as explained above, in general, Eirr

G (f(XS) |B) provides a lower bound on
Ecom
G (f(XS) |B) that is usually strict.

For credal networks under epistemic irrelevance, Equation (17) is particularly important from a philo-
sophical point of view, because it implies the following two equalities:

Eirr
G (f(Xs) | xΠN(s)) = Eirr

G (f(Xs) | xΠ (s)) = Es|xΠ(s)
(f) for all f ∈ G(Xs), (18)

which are obtained by applying Equation (17) twice, once for T = N(S) and once for T = ∅. The first equality
in Equation (18) is an alternative formulation of the epistemic irrelevance assessments in Equation (6),
whereas the second equality can be regarded as a strengthened version of the local assessments that were
imposed by Equation (8), but now expressed in terms of lower expectations.

The philosophical importance of Equation (18) is that it leads to an alternative characterisation for Eirr
G ,

because every conditional lower expectation operator EG that satisfies Equation (18) dominates Eirr
G , in the

sense that
EG(f(XS)|B) ≥ Eirr

G (f(XS)|B) for all S ⊆ G, f ∈ G(XS) and B ∈ P∅(XG).

Indeed, as an immediate consequence, it follows that Eirr
G is the unique smallest—least committal, most

conservative—lower expectation operator that satisfies Equation (18) [17]. In other words, if we impose that
our lower expectation operator EG should satisfy Equation (18), but make no further assumptions, then EG
should be equal to Eirr

G . This result has profound philosophical implications, because it is expressed solely
in terms of lower expectations, without any reference to probabilities. Therefore, this characterisation of
Eirr
G —in contrast to our definition in terms of Equations (6) and (8)—broadens the scope of credal networks

under epistemic irrelevance to other theories of uncertainty that also define a notion of lower expectation,
but which do not necessarily interpret it in terms of probabilities.

An important example of such a theory of uncertainty is that of lower previsions [35, 47, 49]. Basically,
a lower prevision is the same as a lower expectation. However, there is one imporant difference, which is
that a lower prevision is not interpreted as a lower bound on some unknown expectation. In fact, it does
not even assume the existence of some ‘true’ expectation, nor does it assume the existence of probabilities.
Instead, in this theory, the lower expectation—which they call lower prevision—of a function f ∈ G(XG) is
interpreted as the highest price that you are willing to pay to receive a lottery ticket that yields the—possibly
negative—reward f(xG) if the uncertain variable XG ends up having the value xG. For the special case of
lower probabilities, this interpretation simplifies, and the lower probability of an event becomes the highest
betting rate at which you would be willing to bet on that event. Given this difference in interpretation,
Equation (14) no longer makes sense, and it is therefore replaced by a rationality criterion that is called
coherence, which basically requires that it should not be possible for other people to combine multiple bets
against you in such a way that they are guaranteed to win. Rather remarkably, this theory of lower previsions
is mathematically equivalent to that of lower expectations. On the one hand, from a statistical point of
view, the latter might seem simpler and more appealing. On the other hand, from the perspective of fields
such as mathematical finance, lower previsions are more sensible, because of their direct interpretation in
terms of gambling.

In any case, the main message here is that Equation (18) guarantees that Eirr
G can be sensibly defined in

terms of lower previsions, thereby extending the applicability of our results to other—say, financial—contexts,
where lower expectations are no longer bounds on expectations, but are instead given a direct interpretation
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in terms of prices and gambling. This is not possible for the lower expectation Ecom
G of the complete extension,

because its definition relies crucially on the assessements of stocastic independence in Equation (3), which—
unlike epistemic irrelevance—cannot be expressed directly in terms of lower expectations, but only in terms
of probabilities.8 In that sense, credal networks under epistemic irrelevance have a broader scope.

In the rest of this paper, we present theoretical results and algorithmic tools that can be used to com-
pute the global lower expectations Eirr

G (f(XS) | B) that correspond to a credal network under epistemic
irrelevance. We will occasionally consider lower expectations of the form Ecom

G (f(XS) |B) as well, but only
for the purposes of comparing them to Eirr

G (f(XS) |B). All of our results for Eirr
G are applicable regard-

less of the reader’s preferred interpretation for lower expectations—such as lower bounds on expectations,
supremum buying prices, etcetera. Nevertheless, for the purposes of this introductory paper, in order to
stay closer to the typical interpretation of Bayesian networks, we will assume that it is possible to represent
the uncertainty about XG by means of a single (full conditional) probability measure that may however
not be known exactly, and will interpret lower expectations as lower bounds on the corresponding unkown
expectations. In that context, as explained in Section 4, epistemic irrelevance can be regarded as a notion
of ‘almost’ stochastic independence, which does not require that P (xs|xΠN(s)) and P (xs|xΠ (s)) should be
equal, but instead restricts the distance between them by requiring that they belong to the same set.

6. A Linear Programming Approach

The first and most straightforward method for computing Eirr
G (f(XS) |B) is to express it as the solution of

a linear program, and to then solve this linear program by means of standard software tools. The advantage
of this method is that it is always applicable. However, unfortunately, it is often intractable. Nevertheless,
as we will see further on, this linear programming approach can still be an important algorithmic tool,
provided that it is combined with other techniques.

For now, we focus on global unconditional lower expectations of the form Eirr
G (f(XG)); extensions to

conditional and more localized lower expectations will be discussed in Sections 7 and 9. In order to express
such a global unconditional lower expectation Eirr

G (f(XG)) as the solution to a linear program, the first step
is to realize that

Eirr
G (f(XG)) := inf

{
E(f(XS)) : P ∈ F irr

G

}
= min

{ ∑
xG∈XG

f(xG)P (xG) : P (XG) ∈ F irr
G (XG)

}
, (19)

where the use of the minimum is warranted by Footnote 6, and where F irr
G (XG) consists of the global

probability mass functions that correspond to F irr
G —that is, the restrictions of the full conditional probability

measures P ∈ F irr
G to events of the form xG. Because of this equation, computing Eirr

G (f(XG)) is equivalent
to minimizing a linear function of P (XG), where P (XG) takes values in the set of probability mass functions
F irr
G (XG). Therefore, in order to express Eirr

G (f(XG)) as the solution of a linear program, it suffices to
characterise F irr

G (XG) in terms of linear constraints.
In order to obtain such a characterisation for F irr

G (XG), we start from similar characterisations for the
local models Ms|xΠ(s)

. In particular, for all s ∈ G and xΠ (s) ∈ XΠ (s), we describe the local credal set
Ms|xΠ(s)

as the set of all real-valued functions p on Xs that satisfy the following constraints:∑
zs∈Xs

p(zs) = 1 and (∀γ ∈ Γ(s, xΠ (s)))
∑
zs∈Xs

p(zs)γ(zs) ≥ 0, (20)

where Γ(s, xΠ (s)) is a—possibly infinite—set of real-valued functions on Xs—a subset of G(Xs). Such a
characterisation is always possible, because it can be derived from the constraint-based representation in

8In all fairness, there are some very recent results that indicate that complete independence could be axiomatised in terms
of choice functions, a framework for modelling uncertainty that falls beyond the scope of the present discussion [13, Section 4].
We believe this to be promising. In cases where these kinds of axioms can be defended, they could lead to a justification for
complete independence—and hence an interpretation for Ecom

G —that does not rely on probabilities.
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Equation (2). First, p ∈ ΣXs implies the equality in Equation (20), which is the normalization condition of
the probability mass function p. By multiplying this equality by β, and substracting it from the inequalities
in Equation (2), we obtain homogeneous inequalities as in Equation (20)—with γ = α−β. Finally, for every
xs ∈ Xs, p ∈ ΣXs

also requires that p(xs) should be non-negative. If this non-negativity constraint is not yet
implied by the former inequalities, it should be added explicitly by choosing γ = Ixs

:= I{xs}. If Ms|xΠ(s)
is

finitely generated, the total number of inequalities—that is, the size of Γ(s, xΠ (s))—will be finite.
The importance of these local representations in terms of homogeneous linear constraints—regardless of

whether Γ(s, xΠ (s)) is finite or not—is that we can use the local constraints to derive global ones, thereby
obtaining the following characterisation of F irr

G (XG).

Proposition 1. For all s ∈ G and xΠ (s) ∈ XΠ (s), let Ms|xΠ(s)
be fully characterised by means of Equa-

tion (20). Then F irr
G (XG) consists of those P (XG) ∈ ΣXG

for which, for all s ∈ G, xΠN(s) ∈ XΠN(s) and
γ ∈ Γ(s, xΠ (s)): ∑

zs∈Xs

∑
zD(s)∈XD(s)

P (zs, zD(s), xΠN(s))γ(zs) ≥ 0. (21)

When all lower probabilities are strictly positive, this result is fairly straightforward. The global inequal-
ities can then be obtained by imposing all irrelevancies through element-wise Bayes’s rule and clearing the
denominators, as follows. For all s ∈ G, xΠN(s) ∈ XΠN(s) and γ ∈ Γ(s, xΠ (s)), we infer from Equations (9)
and (20) that∑

zs∈Xs

P (zs | xΠN(s))γ(zs) ≥ 0⇔
∑
zs∈Xs

P (zs, xΠN(s))

P (xΠN(s))
γ(zs) ≥ 0⇔

∑
zs∈Xs

P (zs, xΠN(s))γ(zs) ≥ 0,

where the first equivalence follows from F2 and the assumption that P (xΠN(s)) is strictly positive. Because
of F1, the last inequality in this series of equivalences is clearly identical to Equation (21). Therefore, this
line of reasoning leads to a proof of Proposition 1, under an additional assumption of strict positivity. This
argument is well known, and was first presented in Ref. [11, Section 8.3]. The importance of our present
result is that it shows that these inequalities also remain valid—and still fully characterise F irr

G (XG)—if we
drop the assumption that P (xΠN(s)) should be strictly positive.

Ref. [11] does not explicitly impose P (XG) ∈ ΣXG
as a constraint. It seems to assume that it suffices to

impose only the unitary constraint
∑
zG∈XG

P (zG) = 1, and takes the non-negativity of P (zG) for granted.
Although we agree with this statement, we do not believe it to be trivial. The following result makes this
explicit.

Theorem 2. For all s ∈ G and xΠ (s) ∈ XΠ (s), letMs|xΠ(s)
be fully characterised by means of Equation (20).

Then F irr
G (XG) consists of those real-valued functions P (XG) ∈ RXG for which

∑
zG∈XG

P (zG) = 1 and, for
all s ∈ G, xΠN(s) ∈ XΠN(s) and γ ∈ Γ(s, xΠ (s)):∑

zs∈Xs

∑
zD(s)∈XD(s)

P (zs, zD(s), xΠN(s))γ(zs) ≥ 0.

Proposition 1 and Theorem 2 are valid regardless of the cardinality of Γ(s, xΠ (s)), but if the cardinality is
infinite, then the value of these results is mainly of a theoretical nature. They can only be used in practice—
at least in an exact way—if Γ(s, xΠ (s)) is finite for all s ∈ G and xΠ (s) ∈ XΠ (s), or equivalently, if all local
credal sets are finitely generated.9 In that case, Equation (19) and Theorem 2 provide global linear programs
with a finite number of constraints, which can then be solved by standard linear programming software.
Alternatively, in cases where Eirr

G (f(XG)) needs to be evaluated for many different functions f ∈ G(XG), it

9If we allow for non-linear constraints, then local credal sets that are not finitely generated could be practical as well,
provided that they can be described by means of a finite set of non-linear constraints. We believe that Proposition 1 and
Theorem 2 could easily be adapted to allow for such non-linear (homogeneous) constraints, thereby expanding their practical
use when combined with non-linear solvers.
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may also be beneficial to first compute the extreme points of F irr
G by applying a vertex enumeration program

to the linear constraints that are provided by Theorem 2; in that case, Eirr
G (f(XG)) is easily computed as

the minimum of E(f(XG)) over these extreme points.
Unfortunately, none of these approaches is tractable for large credal networks, because the size of the

obtained linear programs (as well as the corresponding number of extreme points) is exponential in the
number of variables that define the network. Nevertheless, these methods do allow for inference problems
in small networks to be solved exactly.

Example 3. In order to illustrate Theorem 2, we apply it to a very simple network that consists of two
unconnected binary variables X1 and X2—see Figure 3—where, for all s ∈ {1, 2} = G, the variable Xs

assumes values in a binary state space Xs = {hs, ts}. As explained in Reference [19], F irr
G (XG) is then the

so-called independent natural extension [26] ofM1 andM2. Our goal here is to characterise this independent
natural extension by means of linear constraints.

We start by constructing a suitable characterisation for the local models, in the form of Equation (20).
As explained in Example 2, for each of the binary variables Xs—with s ∈ {1, 2}—the local credal set Ms

is uniquely characterised by the lower and upper probability of hs, in the sense that p ∈ Ms if and only if
p ∈ ΣXs

and p(hs) ∈
[
p(hs), p(hs)

]
. This immediately implies that Ms is the set of all real-valued functions

p on Xs that satisfy the following five constraints:

p(hs) + p(ts) = 1, p(hs) ≥ 0, p(ts) ≥ 0, p(hs) ≥ p(hs) and p(hs) ≤ p(hs),

of which the first three constraints impose that p ∈ ΣXs
and the last two that p(hs) ∈

[
p(hs), p(hs)

]
. Of

these five constraints, since p(hs) ≥ 0, the second constraint is clearly implied by the fourth. Similarly,
since p(hs) ≤ 1, the third constraint is implied by the first and last constraint. Hence, the second and third
constraint are redundant, which implies that Ms is the set of all real-valued functions p on Xs such that

p(hs) + p(ts) = 1, p(hs) ≥ p(hs) and p(hs) ≤ p(hs).

In order to obtain a representation in the form of Equation (20), we need to make the two remaining
inequalities homogeneous. This can be achieved by multiplying the unitary constraint by a suitable constant
and substracting it from the inequalities. For example, for the first inequality, p(hs) + p(ts) = 1 implies that

p(hs) ≥ p(hs)⇔ p(hs)− p(hs)
[
p(hs) + p(ts)

]
≥ p(hs)− p(hs)⇔

[
1− p(hs)

]
p(hs)− p(hs)p(ts) ≥ 0,

which, since we know from Example 2 that p(ts) = 1− p(hs), is equivalent to p(ts)p(hs)− p(hs)p(ts) ≥ 0. A
similar argument leads to a homogeneous version of p(hs) ≤ p(hs), and we then find that Ms is the set of
all real-valued functions p on Xs such that

p(hs) + p(ts) = 1, p(ts)p(hs)− p(hs)p(ts) ≥ 0 and − p(ts)p(hs) + p(hs)p(ts) ≥ 0.

This characterisation is clearly of the form in Equation (20). Therefore, we can now apply Theorem 2 to
find that in this particular binary case, F irr

G (XG) = F irr
{1,2}(X1, X2) is the largest set of real-valued functions

P (XG) = P (X1, X2) on XG = X1 ×X2 such that

p(t1)P (h1, h2)− p(h1)P (t1, h2) ≥ 0, − p(t1)P (h1, h2) + p(h1)P (t1, h2) ≥ 0, (22)

p(t1)P (h1, t2)− p(h1)P (t1, t2) ≥ 0, − p(t1)P (h1, t2) + p(h1)P (t1, t2) ≥ 0, (23)

p(t2)P (h1, h2)− p(h2)P (h1, t2) ≥ 0, − p(t2)P (h1, h2) + p(h2)P (h1, t2) ≥ 0, (24)

p(t2)P (t1, h2)− p(h2)P (t1, t2) ≥ 0, − p(t2)p(t1, h2) + p(h2)p(t1, t2) ≥ 0 (25)

and
p(h1, h2) + p(h1, t2) + p(t1, h2) + p(t1, t2) = 1. (26)
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Proposition 1 leads to a similar characterisation. However, it additionally imposes that P (X1, X2) should be
non-negative, in the sense that P (x1, x2) ≥ 0 for all x1 ∈ {h1, t1} and x2 ∈ {h2, t2}. Theorem 2 guarantees
that these non-negativity constraints are redundant.

For any f ∈ G(XG), because of Equation (19), computing Eirr
G (f(XG)) is now a matter of minimising

the linear function

f(h1, h2)P (h1, h2) + f(h1, t2)P (h1, t2) + f(t1, h2)P (t1, h2) + f(t1, t2)P (t1, t2) (27)

with respect to the linear constraints in Equations (22)–(26), which is easily solved using standard linear
programming software. For example, say that we are interested in the lower probability P irr

G (A) of the event
A that X1 and X2 are equal, in the sense that (X1, X2) = (h1, h2) or (X1, X2) = (t1, t2). Then as explained
in Section (5), this lower probability is equal to the lower expectation Eirr

G (f(XG)) of the function f = IA, with
IA the indicator of A. Hence, in this case we have that f(h1, h2) = f(t1, t2) = 1 and f(h1, t2) = f(t1, h2) = 0.
If the local credal sets are specified as in Example 2—that is, if we let p(xi) = 1/4 and p(xi) = 3/4—then
solving the linear program above yields P irr

G (A) = Eirr
G (f(XG) = 1/4.

Alternatively, if we want to compute Eirr
G (f(XG) for many different functions f ∈ G(XG), then it can

be worthwhile to first compute the extreme points of F irr
{1,2}(X1, X2), which are the vertices of the polytope

that is described by Equations (22)–(26). Computing the value of Eirr
{1,2}(f(X1, X2)) is then a matter of

minimising Equation (27) over this finite set of extreme points. In general, computing the extreme points
of F irr

G (XG) requires running a vertex enumeration program. However, in this very particular binary case,
analytical expressions for these extreme points are available [19]. If the local credal sets are chosen as in
Example 2, it follows from these expressions that F irr

{1,2}(X1, X2) has six extreme points, one of which is
given by Equation (13). This particular extreme point is also the one that, for f = IA with A as above,
achieves the minimal value of Equation (27). Again, we find that P irr

G (A) = Eirr
G (f(XG) = 1/4. ♦

7. Decomposition Properties: Beyond the Special Case of Trees

For about ten years, starting with its introduction in Reference [11], the linear programming approach
that was outlined in the previous section was basically the only available method for computing inferences in
credal networks under epistemic irrelevance. Since this approach is feasible only for very small networks, this
has severly inhibited—if not made impossible—the application of credal networks under epistemic irrelevance
to real problems. Credal networks under complete—or strong—independence, in contrast, did lead to such
applications [1, 3]. Therefore, it has long been thought that credal networks under epistemic irrelevance are
impractical to work with, at least compared to other types of credal networks.

As a consequence of some recent promising new developments, this perception is now starting to change.
A prime example of such developments is the design of algorithms that are expressed directly in terms of
lower previsions, which—as explained in Section 5—are basically just lower expectations, but with a different
interpretation attached to them. For credal networks under epistemic irrelevance of which the graph is a
tree, there is now a polynomial-time updating algorithm that can compute Eirr

G (f(Xs) | xT ) for s ∈ G and
T ⊆ G \ {s} [24]. This is rather remarkable, especially since the same inference problem is NP-hard for
credal networks under strong (and complete) independence [34]. Other recent algorithmic developments
considered the case of imprecise hidden Markov models under epistemic irrelevance, the graph of which is
again a—special type of—tree [5, 21].

It is no coincidence that all these recent algorithmic successes with credal networks under epistemic
irrelevance have been obtained for networks whose graph is a tree. Essentially, all of these algorithms are
based on the fact that for trees, the irrelevant natural extension satisfies a number of convenient theoretical
properties, which allow for large computational problems to be decomposed into smaller ones and, as such,
enable the development of efficient recursive algorithms; see for example [24].

In order to develop efficient algorithms for networks that are more general than trees, an important first
step is therefore to generalise these theoretical properties from trees to arbitrary directed acyclic graphs.
Recently, it has been shown that this is indeed possible [17, 20, 22]. However, these generalised properties
have been obtained and stated using sets of desirable gambles, and are therefore rather inaccessible to the
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N(K) = {1, 2, 6}

Figure 4: A sub-DAG of the DAG in Figure 1.

general Bayesian network community. In order to remedy this situation, we here present them in a more
accessible format, in terms of lower expectations.

7.1. Sub-networks and their Connection to the Original Network

A first important property is Theorem 3 further on, which relates the lower expectations of a credal
network under epistemic irrelevance to the lower expectations of its so-called sub-networks, thereby allowing
for a reduction of the size of the network. Loosely speaking, a sub-network is just a part of the original
network, obtained by removing some of its nodes. A formal explanation requires some additional graph-
theoretic concepts, which are illustrated in Figure 4.

For any subset K of G, we define its set of parents as Π (K) := (
⋃
s∈K Π (s))\K and its set of descendants

as D(K) := (
⋃
s∈K D(s)) \ K. The set of non-descendants of K is given by ΠN(K) := G \ (K ∪ D(K)),

and we also define the set N(K) := ΠN(K) \ Π (K). If K is a singleton {s}, these concepts reduce to the
simple versions in Section 2. Finally, we call a subset K of G closed if, for all s, t ∈ K and k ∈ G, s v k v t
implies that k ∈ K.

With any subset K of G and any fixed value xΠ (K) of XΠ (K), we now associate a new credal network,
called a sub-network. The graph of this sub-network depends only on K, and is obtained from the original
graph by simply removing the nodes that do not belong to K and the arrows that enter these nodes or depart
from these nodes. For example, in Figure 4, the sub-graph that corresponds to K := {5, 7, 9} is highlighted
by means of thicker lines. The local credal sets of the sub-network are equal to the original ones. However,
this is not immediate: a node s ∈ K might have a parent t that does not belong to K. For example, in
Figure 4, the node 7 ∈ K has a parent 4 that does not belong to K. For this reason, in order to obtain
local models that only depend on parents that belong to the nodes K of the sub-network, we fix the value
xt of Xt for every t ∈ G \K that has a child in K, or equivalently, we fix the value xΠ (K) of XΠ (K). In this
way, the local models of the sub-network depend on the chosen fixed value xΠ (K) of XΠ (K). For example,
in the sub-network of Figure 4, the node 7 has only one parent, which is node 5, and the local credal sets
for 7 are therefore conditional on the value z5 of X5. For every such z5 ∈ X5, this local credal set is given
byM7|z5 :=M7|(z5,x4), whereM7|(z5,x4) is the local credal set of the original network, with x4 the value of
X4 that corresponds to the fixed choice of xΠ (K).

For any choice of K ⊆ G and xΠ (K), the corresponding sub-network, like any credal network, has an
irrelevant natural extension. We will denote this irrelevant natural extension by F irr

K|xΠ(K)
and will use

Eirr
K|xΠ(K)

to refer to the corresponding lower expectations. If K is closed, these lower expectations satisfy
the following important property.
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Figure 5: A sub-network and its local models

Theorem 3 (marginalisation). Consider any closed subset K of G and any xΠ (K) ∈ XΠ (K). Then

Eirr
G

(
f(XK) |BK , xΠ (K), BN(K)

)
= Eirr

K|xΠ(K)

(
f(XK) |BK

)
= Eirr

G

(
f(XK) |BK , xΠ (K)

)
for all f ∈ G(XK), BK ∈ P∅(XK) and BN(K) ∈ P∅(XN(K)).

The crucial feature of this result is that it allows us to reduce an optimisation problem in a credal network
into a similar but smaller-sized optimisation problem in one of its sub-networks. If K is a singleton {s},
with s ∈ K, this sub-network contains only this single node s. The unconditional part of Eirr

s|xΠ(s)
is then

trivially equal to the local lower expectation Es|xΠ(s)
, and therefore, for all f ∈ G(Xs),

Eirr
s|xΠ(s)

(f(Xs)) = Es|xΠ(s)
(f(Xs)) (28)

can easily be computed using the methods in Section 5. In less trivial cases, the obtained reduced optimi-
sation problem can be solved by means of the linear programming techniques of Section 6—provided that
the sub-network is sufficiently small—or by means of other techniques that will be presented further on.

Example 4. In order to illustrate Theorem 3, we apply it to a credal network under epistemic irrelevance
of which the graph is depicted in Figure 1. In particular, we consider some real-valued function h ∈ G(X9) of
X9 and are interested in computing Eirr

G (h(X9) | x3, x4, x6), which is the lower expectation of h conditional
on the event that X3 = x3, X4 = x4 and X6 = x6, for some x3 ∈ X3, x4 ∈ X4 and x6 ∈ X6.

If we choose K = {5, 7, 9}, BK = XK and BN(K) = (X6 = x6), then because Π (K) = {3, 4}, it follows
from Theorem 3 that

Eirr
G (h(X9) | x3, x4, x6) = Eirr

K|xΠ(K)
(h(X9)).

This equation clearly simplifies the problem considerably. The original inference problem at the left hand side
of the equation is a conditional lower expectation in a network with ten nodes, whereas the right hand side
of the equation is an unconditional lower expectation in a network with three nodes, the graph of which is
depicted in Figure 4. Since the size of this sub-network is very small, Eirr

K|xΠ(K)
(h(X9))—and therefore also

Eirr
G (h(X9) | x3, x4, x6)—can be computed using the linear programming methods of Section 6. Alternatively,

since the graph of this sub-network is a chain, we can also use the—more efficient—recursive method that
will be described further on in Example 6. ♦

Readers that are familiar with the Bayesian network techniques of removing barren nodes and d-separated
evidence might have recognised some of these techniques in the above example. On the one hand, since
X6 is d-separated from X9 given X3 and X4, one might for example expect that the evidence x6 can be
removed. Similarly, since X8 and X10 correspond to barren nodes—nodes that are not involved in the
inference and that either have no children either have only barren children—one might expect that these
nodes can be removed from the network. Caution is adviced however in applying this kind of intuition.
Since these Bayesian network techniques are based on the factorisation property in Equation (4), which
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Figure 6: A simple illustration of Theorem 4.

credal networks under epistemic irrelevance do not satisfy, it is far from obvious that these techniques apply
to credal networks under epistemic irrelevance. Nevertheless, in some cases, it turns out that this is indeed
possible.

First of all, since the removal of barren nodes yields a subnetwork of which the set of nodes is clearly
closed, it follows from Theorem 3 that these barren nodes can indeed be removed without affecting the infer-
ence, as is the case in Bayesian networks. In fact, under strict positivity conditions, this result can already
be found in Reference [11, Theorem 15 and 16]. The situation is more complicated for d-separation, because
it needs to be replaced with an alternative—asymmetrical—separation condition, called AD-separation. In
the example above, X6 is in fact AD-separated from X9 given X3 and X4, and the aforementioned intuition
is therefore correct in this case; see Example 12 further on. However, this does not apply generally. A
detailed discussion of AD-separation and its connection with credal networks under epistemic irrelevance
will be provided in the next section. For now, it suffices to forget about this intuition, and to simply apply
Theorem 3 instead.

7.2. The Law of Iterated Lower Expectation

Whenever Theorem 3 applies, it offers a very powerful tool, because it can turn our original inference
problem into a single smaller one. However, clearly, it cannot always apply, because the converse would
mean that every complicated inference in a credal network under epistemic irrelevance can be reduced to
a simple one. Unfortunately, that’s too good to be true. In order to move to more complicated types of
inference, while still remaining efficient, the trick is not to try and reduce our inference problem to a single
simpler problem, but rather to try and decompose it into multiple simpler ones. In the remainder of this
section, we introduce a number of properties that will allow us to do exactly that.

The following property is perhaps the most important one, as it has been—and, no doubt, will remain
to be—the backbone of recursive algorithms.

Theorem 4 (law of iterated lower expectation). Consider any set S ⊆ G, with T := G \ S, such that t @ s
for all t ∈ T and s ∈ S. Then

Eirr
G (f(XG)) = Eirr

T (Eirr
S|XΠ(S)

(f(XG))) for all f ∈ G(XG),

where Eirr
S|XΠ(S)

(f(XG)) is a function of XT whose value in xT ∈ XT is equal to Eirr
S|xΠ(S)

(f(XS , xT )).

Basically, this result is just an imprecise version of the law of iterated expectation, or equivalently, the
law of total probability. For readers that are acquainted with imprecise-probabilistic jargon: this result
establishes marginal extension. The following three examples should help to clarify this perhaps rather
abstract property. The first example is a very simple illustration.

Example 5. Let G := {1, 2, 3}, consider a credal network of which the graph is depicted in Figure 6 and let
f ∈ G(XG) be a function of XG = (X1, X2, X3). The computation of the lower expectation Eirr

G (f(XG)) can
then be simplified as follows. Let S := {3} and T := G \ S = {1, 2}. Since 1 @ 3 and 2 @ 3, the conditions
of Theorem 4 are satisfied, and therefore, we find that
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Figure 7: The DAG of an imprecise Markov chain with 10 nodes.

Eirr
G (f(XG)) = Eirr

{1,2}(E
irr
3|(X1,X2)

(f(X1, X2, X3))) = Eirr
{1,2}(h(X1, X2)),

with
h(x1, x2) := Eirr

3|(x1,x2)
(f(x1, x2, X3)) for all x1 ∈ X1 and x2 ∈ X2.

Computing the function h is trivial because, for every x1 ∈ X1 and x2 ∈ X2, it follows from Equation (28)
that computing h(x1, x2) is a matter of evaluating the local lower expectation E3|(x1,x2)

for the univariate
function f(x1, x2, X3), which is a local problem that can be solved by means of any of the methods that
were discussed in Section 5. Instead of having to compute a lower expectation of a function f that depends
on three variables, in a credal network with three nodes, we are now left with the problem of computing
the lower expectation Eirr

{1,2}(h(X1, X2) of a function h that depends on only two variables, in a credal
network that consists of two disconnected nodes. This reduced problem can now be solved by means of the
linear programming techniques in Section 6. In the particular case where X1 and X2 are both binary, this
procedure was explained in detail in Example 3. ♦

Our second illustration of the law of iterated lower expectation is slightly more involved, and derives a
general recursive inference method for imprecise Markov chains.

Example 6. Consider a credal network whose graph is a chain with ten nodes—see Figure 7—and let
f ∈ G(XG) be a function of XG = (X1, X2, . . . , X10). We are interested in computing Eirr

G (f(XG)). As we
are about to show, Theorem 4 enables us to do this recursively. In particular, if we choose S = {10} and
T = {1, . . . , 9}, then

Eirr
G (f(XG)) = Eirr

T (Eirr
10|X9

(f(XG))) = Eirr
T (f9(XT )), (29)

with
f9(xT ) := Eirr

10|x9
(f(xT , X10)) = E10|x9

(f(xT , X10)) for all xT ∈ XT ,

using Equation (28) for the last equality. In this way, the original problem—the computation of Eirr
G (f(XG))—

has been reduced to a new but smaller problem—the computation of Eirr
T (f9(XT ))—in a chain that now has

only nine nodes. By continuing in this way, removing the nodes of the chain one by one, we can eventually
obtain an inference problem of the form Eirr

1 (f1(X1)), which, as we know from Equation (28), simply requires
us to evaluate a local lower expectation.

For general functions f , the approach that is described above is rather inefficient because it has a com-
plexity that is exponential in the length of the chain. For example, computing f9 already has a complexity
of the order

∏9
i=1 |Xi|, because it requires us to compute f9(xT ) for every xT ∈ XT . This is to be expected

though, because for arbitrary f ∈ G(XG), even simply printing f has such a complexity.
Nevertheless, the approach that is described above is highly practical, because it can be adapted to specific

types of functions, at which point the approach often does become very efficient. Several examples in support
of this claim can be found in Reference [33].

We here restrict ourselves to a simple prototypical case, where f(XG) = h(X10), with h ∈ G(X10) a
function of the last state in the chain. In this particular case, the equations above simplify as follows. First,
since f(XG) = f(XT , X10) = h(X10), we find that f9(XT ) = E10|x9

(h(X10)) = T 10(h)(X9), where we let
T 10 be a map from G(X10) to G(X9), defined for all g ∈ G(X10) by

T 10(g)(x9) := E10|x9
(g(X10)) for all x9 ∈ X9.
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Figure 8: Example of a very simple dynamic network

Hence, it follows that
Eirr
G (h(X10)) = Eirr

T (T 10(h)(X9)).

The beauty of this equation is that the right hand side is of the same form as the left hand side. The only
difference is that the last node of the chain has been removed, and that the role of h has been replaced by
T 10(h). Therefore, we can repeat the same argument over and over again. Eventually, we find that

Eirr
G (h(X10)) = Eirr

1 (T 2( · · · T 9(T 10(h)) · · · )(X1)), (30)

with Eirr
1 equal to E1 because of Equation (28). This computational procedure is linear in the length of the

chain, and therefore highly efficient. ♦

Readers that are familiar with the concept of an imprecise Markov chain [25, 46] should recognise Equa-
tion (30). Indeed, since imprecise Markov chains are credal networks whose graph is a chain, Equation (30)
provides a method for computing the lower expectation of a function on the last variable of an imprecise
Markov chain. This method is well-known; see for example Reference [25]. As we have just seen, it can
be easily derived from the properties in this section. Interestingly, Equation (30) also remains valid if we
consider a credal network under complete—or strong—independence; see for example Reference [46]. In
fact, in the context of imprecise Markov chains, the distinction between epistemic irrelevance, complete
independence and strong independence is usually not made. Care should be taken though in dropping this
distinction, because the equivalence does not extend to more complicated types of inferences. For example,
for an imprecise Markov chain that adopts complete independence, Equation (29) no longer holds.

As a third illustration of Theorem 4, in combination with Theorem 3, we consider an inference problem
in a small dynamic credal network.

Example 7. Consider a network that consists of 3n nodes, with n ∈ N. For every i ∈ {1, . . . , n}, the
variables Xti , Xsia and Xsib represent domain-specific parameters at time i, whose local models depend on
the value of these parameters in the previous time slot. This is a simple example of a dynamic network,
which aims to model the evolution of parameters as time evolves. Figure 8 depicts an example for n = 5.
For n = 14, this network was used as an example in a recent paper about dynamic credal networks [30].

As is explained that paper, this network is a simplified version of a network that models various aspects
of the ripening process of Camembert cheese [4]. In particular, it represents the coupled dynamics of a
yeast behaviour—Kluyveromyces marxianus concentration Xsia—with their substrate consumptions—lactose
concentration Xsib—influenced by temperature—Xti . For our present purposes, the local models that are
attached to the variables in this network are not really important; see Reference [30] for examples. What we
intend to show here is that inference in this network can be performed efficiently.

We focus on one particular inference problem, which is estimating the evolution of the variables Xsia and
Xsib through time, based on their value at time 1 and the evolution of the temperature—Xti—over time. In
order to formalise this problem we define
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Figure 9: Sub-network of the network in Figure 8

Si := {sia, sib} for all i ∈ {1, . . . , n}
and

Sk:` := ∪`i=kSi and Tk:` := {tk, . . . , t`} for all k, ` ∈ {1, . . . , n} such that k ≤ `.

Let m ∈ {2, . . . , n} be some arbitrary point in time and consider a gamble h ∈ G(XSm), a pair of initial states
xS1 ∈ XS1 and a sequence of temperatures xT1:n ∈ XT1:n . The generic inference problem that we intend to
solve is the computation of Eirr

G (h(XSm) | xS1∪T1:n), with G = T1:n ∪ S1:n. The example in Figure 8 corre-
sponds to m = 4. Reference [30] considered a specific case of this inference problem,10 for a credal network
that has the same graphical structure but different independence assumptions—strong independence and a
notion of independence which they call repetitive independence. Since no exact algorithm was available, the
authors of Reference [30] used an approximate Monte Carlo sampling algorithm to compute their inferences.
As we are about to show, in our case—for a credal network under epistemic irrelevance—these inferences
can be computed efficiently and exactly, with a recursive algorithm that has a computational complexity that
is linear in m.

The first step consists in applying Theorem 3 to simplify the inference problem. In particular, since
S2:m is a closed subset of G, it follows from Theorem 3, with K = S2:m BK = XK , f(XK) = h(XSm

) and
BN(K) = xTm:n , that

Eirr
G (h(XSm) | xS1∪T1:n) = Eirr

S2:m|xΠ(S2:m)
(h(XSm)),

where the right-hand side is an inference problem in the sub-network that corresponds to S2:m and xΠ (S2:m).
Figure 9 depicts an example with m = 4. The remaining task is to compute Eirr

S2:m|xΠ(S2:m)
(h(XSm)). In order

to simplify this task further, the trick is to regard this sub-network as a new credal network, to which we can
now again apply the results of this section and, in particular, Theorem 4. Indeed, since the only purpose of
xΠ (S2:m) is to determine the local models of the sub-network, we can suppress them in our notation and can
then think of our problem as that of computing Eirr

S2:m
(h(XSm

)) in a credal network whose graph is—for the
case m = 4—depicted in Figure 10.

As we will show, this problem can be solved recursively. Let hm := h. Then trivially, we have that
Eirr
S2:m

(h(XSm)) = Eirr
S2:m

(hm(XSm)). If we now apply Theorem 4, with S = Sm and T = S2:m−1, we find
that

Eirr
S2:m

(hm(XSm
)) = Eirr

S2:m−1
(Eirr

Sm|XSm−1
(hm(XSm

))) = Eirr
S2:m−1

(hm−1(XSm−1
)),

with
hm−1(xSm−1) := Eirr

Sm|xSm−1
(hm(XSm)) for all xSm−1 ∈ XSm−1 .

10Instead of general inferences about XSm , they computed lower and upper expected values of Xsma and Xsmb , which
corresponds to choosing specific gambles h ∈ G(XSm ).

22



s2a

s2b

s3a

s3b

s4a

s4b

Figure 10: Simplified representation of the sub-network in Figure 9

In these expressions, xSm−1
is an instantiation of the value of the parents of XSm

in the network that is—for
the case m = 4—depicted in Figure 10. However, it should not be forgotten that the local models of this
network are derived from the network in Figure 8. In particular, as can for example be seen from Figure 9,
the sub-network that is used to compute hm−1 does not only depend on xSm−1

, but also on the fixed value
xtm−1 of Xtm−1 that corresponds to xΠ (S2:m). We suppress this value xtm−1 from the notation for the sake
of clarity.

That being said, there are two important observations to be made here. First of all, the original problem
has been reduced into a new yet smaller problem, where m is now replaced by m − 1. Secondly, in order
to obtain this reduction, all we have to do is compute hm−1, which requires us to solve a local inference
problem in a network with two disconnected nodes. Due to the size of this local inference problem—that is,
because the corresponding sub-graph consists of only two nodes—it can easily be solved by means of the linear
programming methods in Section 6 and, if Xsma

and Xsmb
are binary, by means of the specialized methods

in Example 3.
By continuing in this way, the original problem can be made smaller and smaller, and we obtain the

following recursive solution method. Let hm := h as before and, for all i ∈ {3, . . . ,m}, let hi−1 ∈ G(XSi−1
)

be defined by

hi−1(xSi−1) := Eirr
Si|xSi−1

(hi(XSi)) for all xSi−1 ∈ XSi−1 .

Again, the local models of the sub-network that is used to compute hi−1 do not only depend on xSi−1
, but

also on the fixed value xti−1
of Xti−1

that corresponds to xΠ (S2:m). The value of the final inference that we
are after is now given by

Eirr
S2:m

(h(XSm)) = Eirr
S2

(h2(XS2)).

Once more, the local models of the sub-network that is used to compute Eirr
S2

(h2(XS2
)) depend on xΠ (S2:m).

In this case, in particular, as can be seen from Figure 9, these local models depend on the values of XSi−1

and Xti−1
.

If the local computation of each of the functions gi can be performed in a reasonable—say constant—
amount of time, the recursive procedure that is outlined above has a computational complexity that is linear
in m. ♦

7.3. Other Decomposition Properties, Including Factorisation and Additivity

Besides the law of iterated expectation in Theorem 4, there are also other properties that are able to
decompose an inference problem in a credal network under epistemic irrelevance into several similar yet
smaller problems. The most general among them seems to be the following one.

Theorem 5. Let K be a closed subset of G. Then for any f ∈ G(XK), xΠ (K) ∈ XΠ (K), h ∈ G(XΠN(K))
and any non-negative g ∈ G(XN(K)):

Eirr
G

(
h(XΠN(K)) + g(XN(K))IxΠ(K)

(XΠ (K))f(XK)
)

= Eirr
ΠN(K)

(
h(XΠN(K)) + g(XN(K))IxΠ(K)

(XΠ (K))E
irr
K|xΠ(K)

(f(XK))
)
.

23



At first sight, this result might seem a bit complicated. However, upon closer inspection, it should
become clear that it is in fact not. As in Theorem 4, the essential feature here is again that the left hand
side is a lower expectation of a function that depends on all the variables {Xs}s∈G, whereas the right hand
side consists of two separate lower expectations, each of which depends on fewer variables. The following
two corollaries of Theorem 5 highlight this feature even more.

Corollary 6 (factorisation). Let K be a closed subset of G. Then for any f ∈ G(XK) and xΠ (K) ∈ XΠ (K)

and any g ∈ G(XN(K)) such that g ≥ 0:

Eirr
G

(
g(XN(K))IxΠ(K)

(XΠ (K))f(XK)
)

=

{
Eirr
K|xΠ(K)

(
f(XK)

)
Eirr

ΠN(K)

(
g(XN(K))IxΠ(K)

(XΠ (K))
)

if Eirr
K|xΠ(K)

(
f(XK)

)
≥ 0

Eirr
K|xΠ(K)

(
f(XK)

)
E

irr

ΠN(K)

(
g(XN(K))IxΠ(K)

(XΠ (K))
)

if Eirr
K|xΠ(K)

(
f(XK)

)
≤ 0.

Corollary 7 (external additivity). Let K be a closed subset of G such that Π (K) = ∅. Then for any
f ∈ G(XK) and h ∈ G(XN(K)):

Eirr
G

(
h(XN(K)) + f(XK)

)
= Eirr

N(K)

(
h(XN(K))

)
+ Eirr

K

(
f(XK)

)
.

Both of these corollaries are illustrated in our next example, where we apply them to a very simple
network with two disconnected nodes.

Example 8. Consider again the network in Figure 3, which consists of two disconnected nodes. This
network is identical to that of Examples 2 and 3. This time though, we do not require the corresponding
variables X1 and X2 to be binary.

In this network, for K := {1}, we find that Π (K) = ∅ and ΠN(K) = N(K) = {2}. Furthermore, for
any i ∈ {1, 2} and any f ∈ G(Xi), we know from Equation (28) that Eirr

i (f(Xi)) = Ei(f(Xi)). Therefore,
as a straightforward consequence of Corollary 7, we find that

Eirr
G (f(X1) + h(X2)) = E1(f(X1)) + E2(h(X2)) for all f ∈ G(X1) and h ∈ G(X2).

Similarly, Corollary 7 implies that

Eirr
G (f(X1)g(X2)) =

{
E1(f(X1))E2(g(X2)) if E1(f(X1)) ≥ 0

E1(f(X1))E2(g(X2)) if E1(f(X1)) ≤ 0

for all f ∈ G(X1) and g ∈ G(X2) such that g ≥ 0.
For a credal network under complete independence, similar expressions trivially hold, because they follow

directly from Equation (4). This not the case for credal networks under epistemic irrelevance though, because
for them, Equation (4) no longer holds. Nevertheless, as we have just seen, the expressions above can still
be obtained, by means of Corollaries 6 and 7. ♦

Readers that are familiar with the notion of independent natural extension [26] will probably have
recognized the expressions in this example. This is no coincidence. Indeed, as we already mentioned in
Example 3 for binary variables, the unconditional part of the irrelevant natural extension of a network
with two disconnected nodes is equal to the independent natural extension of its two local models. This
is also true for non-binary variables, as well as for networks that consist of multiple—possibly more than
two—disconnected nodes [19]. Due to this connection, the equations in Example 8 follow directly from the
factorisation and additivity properties of the independent natural extension; see for example Reference [26,
Theorem 22 and Proposition 27].

These properties of the independent natural extension have been very important to the development of
algorithms for credal trees under epistemic irrelevance. In particular, the algorithms in Reference [24] are
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basically a combination of the factorisation property of the independent natural extension with a specific
case of the law of iterated lower expectation in Theorem 4. In this sense, these algorithms can be regarded
as a consequence of Theorems 4 and 5. It should therefore not be surprising that these propositions—and
their corollaries—can be used to develop inference algorithms for credal trees under epistemic irrelevance.
The following example illustrates that this is indeed possible, for the simple case of an imprecise hidden
Markov model.

Example 9. Consider a credal network that has 2n+ 1 variables, with n ∈ N. The state variables Xsi , for
i ∈ {1, . . . , n, n+ 1}, form a chain. The observation variables Xoi , for i ∈ {1, . . . , n}, are connected to their
corresponding state variable by means of a single arrow. Figure 11 illustrates this graphical structure for
the case n = 6. In these networks, the observation variables are typically observed, and the inference task
then consist in using these observations to infer something about the state variables. For this reason, the
state variables are referred to as ‘hidden’. In the Bayesian network case, such a network is therefore called
a hidden Markov model. In the case of a credal network, it is called an imprecise hidden Markov model.

The ultimate goal of this example is to illustrate how to compute conditional lower expectations of the
form Eirr

G (f(Xsn+1
) | xo1 , . . . , xon) in such a network, for some f ∈ G(Xsn+1

) and, for all i ∈ {1, . . . , n},
some xoi ∈ Xoi . However, at the moment, we do not yet have the theoretical tools to tackle this problem,
and we therefore postpone this task to Example 14 in Section 9. For now, we restrict ourselves to a simpler
problem, which is to compute lower expectations of the form Eirr

G

(
Ixo1

(Xo1) · · · Ixon
(Xon)f(Xsn+1

)
)
. This

may seem abstract, but it already includes as a particular case the computation of the lower probability
P irr
G

(
xo1 , · · · , xon

)
of the observations: as we know from Section 5, this correspond to choosing f = 1.

Similarly, we find that

P
irr

G

(
xo1 , · · · , xon

)
= E

irr

G

(
Ixo1

(Xo1) · · · Ixon
(Xon)

)
= −Eirr

G

(
− Ixo1

(Xo1) · · · Ixon
(Xon)

)
,

which can be computed by choosing f = −1. Furthermore, as we will see in Example 9, being able to
solve this simpler problem serves as a crucial first step towards computing lower expectations of the form
Eirr
G (f(Xsn+1

) | xo1 , . . . , xon).
For all k ∈ {1, . . . , n + 1}, we define the sets of nodes Sk := {sk, . . . , sn+1}, Ok := {ok, . . . , on} and

Gk := Sk ∪Ok, and we let hk be a real-valued function on XΠ (sk), defined for all xΠ (sk) ∈ XΠ (sk) by

hk(xΠ (sk)) := Eirr
Gk|xΠ(sk)

(
IxOk

(XOk
)f(Xsn+1

)
)

= Eirr
Gk|xΠ(sk)

(
Ixok

(Xok) · · · Ixon
(Xon)f(Xsn+1

)
)
.

Since G1 = G, the lower expectation that we want to compute is then equal to h1(xΠ (s1)), where the value
of xΠ (s1) is purely symbolic because Π (s1) = ∅. We will now compute h1(xΠ (s1)) recursively.

Consider any k ∈ {1, . . . , n} and any xΠ (sk) ∈ Xsk . Then on the one hand, by applying Theorem 4 to
the subnetwork that corresponds to Gk and xΠ (sk), we find that

hk(xΠ (sk)) = Eirr
Gk|xΠ(sk)

(
IxOk

(XOk
)f(Xsn+1)

)
= Eirr

sk|xΠ(sk)

(
Eirr
Gk+1∪{ok}|Xsk

(
IxOk

(XOk
)f(Xsn+1

)
))
. (31)

On the other hand, for any xsk ∈ Xsk , since Π (sk+1) = sk and Ixok
≥ 0, applying Corollary 6 to the

subnetwork that corresponds to Gk+1 ∪ {ok} and xsk implies that

Eirr
Gk+1∪{ok}|xsk

(
IxOk

(XOk
)f(Xsn+1)

)
= Eirr

Gk+1∪{ok}|xsk

(
Ixok

(Xok)IxOk+1
(XOk+1

)f(Xsn+1)
)

=

{
hk+1(xΠ (sk+1))E

irr
ok|xsk

(
Ixok

(Xok)
)

if hk+1(xΠ (sk+1)) ≥ 0

hk+1(xΠ (sk+1))E
irr

ok|xsk

(
Ixok

(Xok)
)

if hk+1(xΠ (sk+1)) ≤ 0.
(32)

Since we know from Equation (28) that

Eirr
ok|xsk

(
Ixok

(Xok)
)

= P ok|xsk
(xok) and E

irr

ok|xsk

(
Ixok

(Xok)
)

= P ok|xsk
(xok)

and that the unconditional part of Eirr
sk|xΠ(sk)

is equal to the local lower expectation Esk|xΠ(sk)
, Equations (31)

and (32) provide a simple recursive method for computing hk, which only requires local computations. In
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Figure 11: The DAG of an imprecise hidden Markov model

order to start the recursion, we use the fact that

hn+1(xΠ (sn+1)) = Eirr
sn+1|xΠ(sn+1)

(
f(Xsn+1

)
)

= Esn+1|xΠ(sn+1)
(f), (33)

where we use Equation (28) for the last equality. Starting from this point, a simple backward propagation
scheme will now yield the desired value of h1(xΠ (s1)). ♦

Similar decomposition methods can also be developed for other types of inferences; see for example
References [21, 24]. They both consider the case of credal trees, and they both make use of the factorisation
property of the independent natural extension, in combination with a specialized version of the law of iterated
lower expectation in Theorem 4. Therefore, in all these cases, the resulting algorithms can be regarded as
a consequence of Theorems 4 and 5.

What is important here though is that the generality of Theorems 4 and 5 also enables us to develop
similar decomposition methods for credal networks whose graph is not a tree, thereby allowing us to move
beyond the cases that are considered in References [24] and [21]. We justify this claim by means of two
examples. Example 10 is an extension of Example 14 to the case of a second order imprecise hidden Markov
model, the graph of which is no longer a tree. Example 11 applies to arbitrary credal networks under
epistemic irrelevance, regardless of their graphical structure.

Example 10. Consider a similar set-up as in Example 9, the only difference being that the local model
for the state variable Xsi now depends on the value of the two previous states instead of only that of the
previous one. See Figure 12 for an example with n = 6. In the Bayesian network case, such a network is
called a second order hidden Markov model. Similarly, in the case of a credal network, we call it a second
order imprecise hidden Markov model.

Our aim here is again to compute a lower expectation of the form Eirr
G

(
Ixo1

(Xo1) · · · Ixon
(Xon)f(Xsn+1)

)
.

As we know from Example 9, this includes as particular cases the computation of P irr
G

(
xo1 , · · · , xon

)
and

P
irr

G

(
xo1 , · · · , xon

)
. Furthermore, as we will see in Example 14, it also allows us to compute inferences of

the form Eirr
G (f(Xsn+1

) | xo1 , . . . , xon).
For any k ∈ {1, . . . , n+ 1}, let Sk, Ok, Gk and hk be defined as in Example 9. Then as in that example,

the lower expectation that we want to compute is equal to h1(xΠ (s1)), with xΠ (s1) purely symbolic because
Π (s1) = ∅. Similarly, hn+1(xΠ (sn+1)) is again given by Equation (33). Note though that in this case sn+1

has two parents, whereas in Example 9 it only had one.
The remaining step consists in developing a backward propagation scheme that allows us to easily compute

hk based on hk+1. For k ≥ 2, using an argument that is analogous to that in Example 9, we find that

hk(xΠ (sk)) = Eirr
Gk|xΠ(sk)

(
IxOk

(XOk
)f(Xsn+1)

)
= Esk|xΠ(sk)

(
Eirr
Gk+1∪{ok}|(Xsk

,xsk−1
)

(
IxOk

(XOk
)f(Xsn+1)

))
,

where, for all xsk ∈ Xsk , we have that

Eirr
Gk+1∪{ok}|(xsk

,xsk−1
)

(
IxOk

(XOk
)f(Xsn+1

)
)

=

{
hk+1(xΠ (sk+1))P ok|xsk

(xok) if hk+1(xΠ (sk+1)) ≥ 0

hk+1(xΠ (sk+1))P ok|xsk
(xok) if hk+1(xΠ (sk+1)) ≤ 0.

For k = 1, we can again use Equations (31) and (32). ♦
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Figure 12: The DAG of a second order imprecise hidden Markov model

Example 11. Consider an arbitrary credal network under epistemic irrelevance and let G be its set of nodes.
Consider any xG ∈ XG. As we will show in this example, the lower and upper probability of xG satisfy a
global factorisation formula that is very similar to that of Bayesian networks; see Equation (4).

Let ` be an arbitrary leaf of the DAG of the network, that is, a node with no children (this is always
possible, because every DAG has at least one leaf). Then D(`) = ∅ and ΠN(`) = G \ {`}, which implies
that IxG

= Ix`
IxΠ(`)

IxN(`)
. Therefore, and because Eirr

scxΠ(s)
(Ixs

) ≥ 0, we can apply Corollary 6 for K = {`},
f = Ix`

and g = IxN(`)
to find that

P irr
G (xG) = Eirr

G (IxG
) = Eirr

G\{`}(IxG\{`})E
irr
scxΠ(s)

(Ixs) = P irr
G\{`}(xG\{`})P scxΠ(s)

(xs),

where we have used Equation (28) for the last equality. Similarly, since Eirr
scxΠ(s)

(−Ixs) ≤ 0, we find that

P
irr

G (xG) = −Eirr
G (−IxG

) = −Eirr

G\{`}(IxG\{`})E
irr
scxΠ(s)

(−Ixs
) = P

irr

G\{`}(xG\{`})P scxΠ(s)
(xs).

Exactly the same technique can now again be applied to the sub-network that corresponds to G \ {`}: it
suffices to choose some arbitrary leaf of the corresponding sub-graph and factorise out the corresponding
local lower or upper probability. By continuing in this way, removing one node at the time, we eventually
arrive at the following expressions:

P irr
G (xG) =

∏
s∈G

P scxΠ(s)
(xs) and P

irr

G (xG) =
∏
s∈G

P scxΠ(s)
(xs). (34)

Much like in Example 8, similar expressions trivially hold for credal networks under complete independence,
because they then follow directly from Equation (4). ♦

8. Epistemic h-irrelevance, AD-separation and Graphoid Axioms

As the reader may have noticed, the second equality in Theorem 3 is redundant: it follows from the
first equality by choosing BN(K) = XN(K). The reason why we nevertheless state it explicitly, is because it
illustrates that the irrelevant natural extension satisfies many more epistemic irrelevances than the basic ones
that were used to define it in Equation (6). In fact, it even satisfies statements of epistemic h-irrelevance.

Definition 2. [14] For three pairwise disjoint sets I, S, C ⊆ G, we say that XI is (epistemically) h-irrelevant
to XS conditional on XC , and write HIR(I, S | C), if

Eirr
G

(
f(XS) |BS , xC , BI

)
= Eirr

G

(
f(XS) |BS , xC

)
for all f ∈ G(XS), BS ∈ P∅(XS), xC ∈ XC and BI ∈ P∅(XI).
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Indeed, Theorem 3 clearly implies that for any closed subset K of G, XN(K) is epistemically h-irrelevant to
XK conditional on XΠ (K): HIR(N(K),K | Π (K)).

This statement of epistemic h-irrelevance is similar to the assessment of epistemic irrelevance that was
imposed in Equation (6)—for S = {s}, C = Π (s) and I = N(s)—but differs on several levels. First
of all: it is stated in terms of lower expectations, whereas Equation (6) was stated in terms of sets of
probabilities. However, this is not so important; epistemic h-irrelevance can also be defined in terms of
sets of probabilities [17]. What really sets epistemic h-irrelevance apart from epistemic irrelevance is that
it is far more powerful when it comes to conditional models. Unlike epistemic irrelevance, as can be seen
from Definition 2, epistemic h-irrelevance requires all information about the value of XI—including partial
information—to be irrelevant to all beliefs about XS—conditional and unconditional beliefs—conditional
on the value of XC .

As it turns out, the irrelevant natural extension satisfies many more statements of epistemic h-irrelevance
than the ones that are implied by Theorem 3. Similarly to how for a Bayesian network, the well-known
d-separation criterion implies stochastic independence, for the irrelevant natural extension, the so-called
AD-separation criterion [17, 22] implies epistemic h-irrelevance; see Theorem 9 below.

In order to define AD-separation, we require the concept of a blocked path. Consider any path s1, . . . , sn
in G, with n ≥ 1. We say that this path is blocked by a set of nodes C ⊆ G whenever at least one of the
following four conditions holds:

B1. s1 ∈ C;

B2. there is a node si, with 1 < i < n, such that si → si+1 and si ∈ C;

B3. there is a node si, with 1 < i < n, such that si−1 → si ← si+1, si /∈ C and D(si) ∩ C = ∅;

B4. sn ∈ C.

Two sets of nodes are now said to be AD-separated by C if every path between them is blocked by C.

Definition 3 (AD-separation). Consider (not necessarily pairwise disjoint) subsets I, S and C of G. Then
I is AD-separated from S by C, denoted as AD(I, S |C), if every path i = s1, . . . , sn = s, n ≥ 1, from any
node i ∈ I to any node s ∈ S, is blocked by C.

Readers that are familiar with d-separation will most likely recognise our definition for AD-separation;
it is indeed very similar. The only difference is that d-separation adds an extra blocking condition:

B2b. there is a node si, with 1 < i < n, such that si−1 ← si and si ∈ C.

The removal of condition B2b has two consequences for AD-separation. Firstly, it makes AD-separation
asymmetric: AD(I, S | C) is not equivalent to AD(S, I | C). This also explains the name: the ‘A’ in AD-
separation is short for asymmetric. Secondly, it implies that AD-separation is a stronger notion of separation
than d-separation, in the sense that is harder to satisfy.

For our present purposes, it suffices to focus on the case where I, S and C are pairwise disjoint. In
that case, our notion of AD-separation is equivalent to that of Moral [37] and becomes a special case of
Vantaggi’s notion of L-separation [48], which also adds a logical component. More detailed information
on the connection with these other notions of separation can be found in References [17, 22], where it is
also shown that AD-separation satisfies all asymmetric graphoid properties. We restrict ourselves here to
providing the following alternative characterisation.

Proposition 8. Consider any pairwise disjoint sets I, S, C ⊆ G. Then AD(I, S |C) if and only if there is
some closed subset K of G such that S ⊆ K, Π (K) ⊆ C, I ⊆ N(K) and D(K) ∩ C = ∅.

Example 12. As a simple illustration of AD-separation, consider for example the sets I = {6}, S = {9} and
C = {3, 4}. Then according to the graph in Figure 4, as we already claimed at the end of Section 7.1, I is AD-
separated from S by C. This claim can now be verified by applying Proposition 8 for K = {5, 7, 9}. In this
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particular case, the separation is symmetric, because S is also AD-separated from I by C—consider K = {6}
and apply Proposition 8. However, this is not always the case. Consider for example the sets I = {1, 6},
S = {5, 7} and C = {3, 4, 9} in the same graph. Here too, applying Proposition 8 for K = {5, 7, 9} leads us
to conclude that I is AD-separated from S by C. However, in this case, S is not AD-separated from I by C
because the path 5← 3← 1 is not blocked by C. ♦

By combining Proposition 8 with Theorem 3, we obtain the following separation property for the irrele-
vant natural extension of a credal network.

Theorem 9. For any pairwise disjoint sets I, S, C ⊆ G such that AD(I, S | C), the irrelevant natural
extension Eirr

G satisfies HIR(I, S | C).

The Bayesian network counterpart of this result—with AD-separation and epistemic h-irrelevance re-
placed by d-separation and stochastic independence—is proved by exploiting the fact that stochastic inde-
pendence satisfies various graphoid properties (symmetry, redundancy, decomposition,weak union, contrac-
tion and intersection). Therefore, since epistemic irrelevance fails some of these graphoid properties [15], it
has long been thought that a similar result would not hold for credal networks under epistemic irrelevance.
However, as Theorem 9 shows, it is nevertheless possible to prove such a result. In order to do so, two steps
were essential. The first step was to drop the symmetry of the separation criterion, by replacing d-separation
with AD-separation; since epistemic irrelevance is asymmetric, symmetry is not to be expected anyway. The
second step was to not focus on graphoid properties, but to instead use other—more direct—methods to
prove separation; for Theorems 3 and 9—the proof of the latter is heavily based on the former—the main
technical tool was a separating hyperplane result in terms of sets of desirable gambles; see Reference [22]
for more information.

The fact that Theorem 9 can be proved without the use of graphoid properties illustrates nicely that these
properties are not essential, and that the fact that a notion of independence—such as epistemic irrelevance—
fails some of them, should not be regarded as problematic. In fact, I think that the common practice of
regarding these properties as axioms, and of comparing different notions of independence by means of the
graphoid axioms that they satisfy, is flawed. Of course, when they are satisfied, graphoid properties are
important and useful. However, one should be very careful in regarding them as axioms. For example, if
we were to impose on epistemic h-irrelevance an asymmetric version of the ‘axiom’ of contraction, it would
require that (

HIR(I, S | C) and HIR(I,W | C ∪ S)
)
⇒ HIR(I, S ∪W | C). (35)

If we choose C = ∅ here, then basically, this property requires that if XI is irrelevant to our beliefs about XS

and irrelevant to our conditional beliefs about XW given XS , then XI should also be irrelevant to our joint
beliefs about XS∪W . I do not consider it reasonable to enforce this, because essentially, it requires that our
beliefs about XS∪W should be completely determined by our beliefs about XS and our conditional beliefs
about XW given XS . For probabilities, this is trivially true—under strict positivity assumptions—because
it follows from Bayes’s rule. However, for more general belief models, such as sets of probabilities, it is
well known that this is not always the case. I think that this is perfectly normal, and that there is no
fundamental reason why such a property should be enforced. For that reason, I consider it unreasonable
to regard contraction as an axiom, at least not in general. A similar argument can be used to question the
axiomatic status of the intersection property.

9. Conditioning and Updating

Conditioning on events with probability zero is traditionally problematic. Applying Bayes’s rule then
requires a division by zero, and therefore, the desired conditional probability or expectation is ill-defined.
In the context of sets of probabilities, the issue is even more complex, because it can happen that the
conditioning event has lower probability zero but positive upper probability.

Throughout this paper, so far, the use of full conditional probability measures has allowed us to stay
clear of this issue. Indeed, conditioning on events with probability zero has been non-problematic in our
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approach. For example, regardless of the lower and/or upper probability of the event B, the lower conditional
expectations Eirr

G (f(XS) | B) and Ecom
G (f(XS) | B) are always well-defined. The reason why this is the

case is because we do not regard conditioning as a two-step process, where the first step is to build an
unconditional joint model and the second step is then to condition this unconditional model—using Bayes’s
rule—to obtain a conditional one. Instead, the use of full conditional probability measures has enabled us
to define conditional models directly.

However, despite the advantages of this approach, there are still two issues left. First of all, the fact
that we can define conditional models does not necessarily imply that we can compute them. As the reader
may have noticed, most of the inferences that we have considered in Sections 6 and 7 were unconditional.
Secondly, what we are usually interested in in practice is an updated model, that is, a model that takes
into account some observation that we have made. Although these updated models are often identified with
conditional ones, there is no fundamental reason why this should be the case, even more so in the presence
of probability zero. The computational issue will be addressed further on in Section 9.2. For now, we focus
on the second issue, which is the updating problem.

9.1. Updating by means of Regular Extension

Consider a non-empty set FG of full conditional probability measures on XG, let S be a subset of G,
and consider some real-valued function f ∈ G(XS) and an event B ∈ P∅(XG). Suppose now that we observe
the event B, in the sense that we receive the information that the true value of XG belongs to B. Based
on this observation, what should be our lower and upper expected value for f(XS)? We will refer to this
problem as the updating problem. At first sight, one might be inclined to think that we should of course use
EG(f(XS) |B) and EG(f(XS) |B), which are the conditional lower and upper expectations that correspond
to FG. However, as we are about to argue, this is not necessarily true.

In order to simplify the problem, let us first consider the case of a single full conditional probability
measure P ∈ FG. If we observe B, what then should be our expectation for f(XS)? The most straight-
forward answer would be to use E(f(XS) |B). However, it is important to realise that by doing so, we are
implicitly identifying conditional expectations with updated expectations, that is, we are interpreting them
as expectations that should be adopted after observing an event. Despite the fact that it is often taken
for granted, this identification is not trivial, nor is it necessary. Nevertheless, provided that the notion of
‘observing an event’ is formalized very carefully, there are in fact some very good arguments for interpreting
conditional expectations as updated ones—see for example the work of Shafer [42, 43, 45]—and we will
therefore follow this approach here as well.

However, there is one particular case where these arguments do not apply, which is when P (B) = 0. In
that case, after observing B, it seems reasonable to conclude that the full conditional probability measure P
is—at least partially—incorrect, because it assigns probability zero to an event that we have just observed.
Should this lead us to discard P altogether, or should we still adopt the corresponding conditional expectation
E(f(XS) |B) as our updated expectation? For example, in the case of a Bayesian network, if we observe the
value xΠ (s) of the parents of a node s ∈ G, but the global model assigns probability zero to them, should
we then still adopt the local expectation E(f(Xs) | xΠ (s)) as our updated expectation for f(Xs)? Although
we think that this indeed makes sense, it seems to us that this is a purely personal choice that is difficult to
defend on objective grounds.

The situation becomes even more complicated in the imprecise case, where B might have probability
zero according to some P ∈ FG, but positive probability according to others. In that case, after observing
B, one could argue that the models that assign positive probability to B are better than the others, and
that the others should therefore be discarded. The resulting updating rule is called regular extension [49,
Appendix J2]. It corresponds to the use of the following updated lower expectation:

RG(f(XS) |B) := inf{E(f(XS) |B) : P ∈ FG, P (B) > 0}. (36)

If PG(B) > 0, then P (B) is strictly positive for all P ∈ FG, and therefore, in that case, it does not
matter whether we use RG(f(XS) | B) or EG(f(XS) | B) as our updated lower expectation. However, if
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PG(B) > PG(B) = 0, these two updating rules can lead to substantially different lower expectations; see
for example [49, Appendix J2] or the introduction of [8].

If PG(B) = 0, Equation (36) is ill-defined because every P ∈ FG then assigns probability zero to B. In
that case, two options can be considered. The first option is to discard all the models in FG. No information
about E(f(XS) |B) is then available, and RG(f(XS) |B) is then chosen to be the lowest possible bound on
E(f(XS) | B), which is equal to min{f(xS) : xG ∈ B}; see for example References [36, 49]. Alternatively,
since all the models in FG are in this case ‘equally bad’, we can choose to keep them all, leading us to adopt
RG(f(XS) |B) = EG(f(XS) |B) as our updated lower expectation. In the context of credal networks, this
choice boils down to the following question: if we observe the value xΠ (s) of the parents of a node s ∈ G,
but the global model assigns upper probability zero to them, should we then use min f as our updated lower
expectation for f(Xs), or should we still adopt the local lower expectation Es|xΠ(s)

(f)? We prefer the second

option, and we therefore choose to adopt the following definition of regular extension:

RG(f(XS) |B) :=


EG(f(XS) |B) if PG(B) > 0

inf{E(f(XS) |B) : P ∈ FG, P (B) > 0} if PG(B) > PG(B) = 0

EG(f(XS) |B) if PG(B) = 0.

(37)

This definition can be applied to any non-empty set FG of full conditional probability measures on XG,
and therefore, in particular, to F irr

G and Fcom
G . We will denote the resulting conditional lower expectations

by Rirr
G (f(XS) | B) and Rcom

G (f(XS) | B), respectively. Within the context of this paper, we are mainly
interested in the operator Rirr

G , which we call the irrelevant regular extension of a credal network. It satisfies
the following convenient result, which is basically a variation on Theorem 3.

Theorem 10. Let K be a closed subset of G. Then for any f ∈ G(XK), xΠ (K) ∈ XΠ (K), BK ∈ P∅(XK)
and BN(K) ∈ P∅(XN(K)), we find that

Rirr
G

(
f(XK) |BK , xΠ (K), BN(K)

)
=

{
Eirr
K|xΠ(K)

(
f(XK) |BK

)
if P

irr

ΠN(K)(xΠ (K), BN(K)) > 0

Rirr
K|xΠ(K)

(
f(XK) |BK

)
if P

irr

ΠN(K)(xΠ (K), BN(K)) = 0.

If the conditioning event BK is trivial, in the sense that it is equal to XK and can therefore be discarded,
we obtain the following special case.

Corollary 11. Let K be a closed subset G. Then for any xΠ (K) ∈ XΠ (K) and BN(K) ∈ P∅(XN(K)), we
have that

Rirr
G

(
f(XK) | xΠ (K), BN(K)

)
= Eirr

K|xΠ(K)

(
f(XK)

)
for all f ∈ G(XK).

This result also allows us to corroborate our earlier claim that Equation (37) preserves the local models
of a credal network. This can be seen by choosing K := {s}, with BN(K) = XN(K) or BN(K) = {xN(K)}.
Indeed, for these two particular choices, we find that

Rirr
G (f(Xs) | xΠN(s)) = Rirr

G (f(Xs) | xΠ (s)) = Eirr
s|xΠ(s)

(f(Xs)) = Es|xΠ(s)
(f) for all f ∈ G(Xs), (38)

where the final equality follows from Equation (28). By comparing this result with Equation (18), we see
that the irrelevant regular extension of a credal network satisfies the same assessments as its irrelevant
natural extension.

Both extensions are however not equal. In general, the irrelevant regular extension of a credal network
is more informative than the irrelevant natural extension, in the sense that

Rirr
G (f(XG) |B) ≥ Eirr

G (f(XG) |B) for all f ∈ G(XG) and B ∈ P∅(XG),
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and it therefore provides tighter bounds on the unknown expectation EG(f(XG) |B). Whether or not the
extra assumptions that are required to obtain these tighter bounds are warranted is a matter of personal
preference. We think that they are, and that updating by means of regular extension should therefore be
preferred over the use of the natural extension. Furthermore, as we will see, the regular extension is also
easier to compute. Nevertheless, in the remainder of this paper, we will consider both approaches.

With that, we leave this debate on the difference between updating and conditioning for what it is, and
move on to the more practical issue of how to compute updated lower expectations. More information on
the interplay between updating, conditioning and lower probability zero can be found in References [54]
and [8]; the latter also provides a rather extensive philosophical justification for the use of natural and
regular extension as updating rules.

9.2. Computing Conditional Lower Expectations

So far, as the reader may have noticed, we have computed only very few conditional lower expectations:
the results in Section 6 and the majority of the examples in Section 7 all consider the problem of computing
an unconditional lower expectation. The only exceptions are the inference problems in Examples 4 and 7.
However, these examples could be regarded as cheating because, in both cases, we used Theorem 3 to reduce
the conditional lower expectation of interest to an unconditional lower expectation in a sub-network. This is
no coincidence. In fact, the methods that we have presented so far are not able to compute conditional lower
expectations that are truly conditional, in the sense that it is not possible to reduce them to an unconditional
inference problem in a sub-network. In order to compute such ‘truly’ conditional lower expectations, we
require some additional machinery.

As before, let FG be a non-empty set of full conditional probability measures on XG and let EG be the
corresponding lower expectation operator. With any function f ∈ G(XG) and any event B ∈ P∅(XG), we
can then associate a real-valued function ρf,B , defined by

ρf,B(µ) := EG
(
IB(XG)[f(XG)− µ]

)
for all µ ∈ R.

In order to evaluate this function, we only need to know the unconditional part of EG. Nevertheless, rather
remarkably, we can use this function to compute conditional inferences, in the following way.

The simplest case is when PG(B) > 0. In that case, it can be shown that ρf,B is a (Lipschitz) continuous
strictly decreasing concave function of µ, the unique root of which is equal to EG(f(XG) |B) [8]. Further-
more, since we know from Equation (37) that RG(f(XG) | B) and EG(f(XG) | B) coincide in this case,
this unique root will then also be equal to RG(f(XG) |B). Because ρf,B is strictly decreasing, finding this
root is relatively easy: since EG(f(XG) |B) must belong to the interval [min f,max f ], we can use a simple
root-finding procedure such as the bisection method. References [24, Section 6.3] and [51, page 18] provide
more efficient methods, which take advantage of the specific properties of ρf,B . All of these approaches date
back to the work of Lavine [32], and this method is therefore sometimes referred to as Lavine’s bracketing
algorithm.

If PG(B) = 0, the situation becomes slightly more complicated. The function ρf,B is again (Lipschitz)
continuous and concave, but it is no longer strictly decreasing and does not have a unique root. We
distinguish between two cases: PG(B) > 0 and PG(B) = 0.

If PG(B) > 0, one can show that ρf,B is equal to zero on the interval (−∞, µ∗f,B ] and strictly decreasing
on [µ∗f,B ,+∞), where

µ∗f,B := max{µ ∈ R : ρf,B(µ) ≥ 0}.

The rightmost root µ∗f,B now takes on the role of the unique root in the previous case, in the sense that
it is equal to RG(f(XG) | B). However, unlike in the previous case, it is not guaranteed to coincide with
EG(f(XG) |B), which can now no longer be inferred from ρf,B . Similarly to what happened in the previous
case, finding the rightmost root µ∗f,B is a matter of applying an appropriate bracketing algorithm. However,
care should now be taken in order not to introduce numerical errors, especially if ρf,B decreases slowly on
[µ∗f,B ,+∞); see Reference [8, Section 3.3] for a more detailed discussion.

32



Finally, if PG(B) = 0, then ρf,B(µ) = 0 for all µ ∈ R, in which case ρf,B cannot be used to infer
information about EG(f(XG) |B) or RG(f(XG) |B).

In summary then, we conclude that if the conditional event B has strictly positive upper probability
PG(B), we can use the function ρf,B to compute RG(f(XG) | B). Similarly, if B has strictly positive
lower probability PG(B), we can use the function ρf,B to compute EG(f(XG) | B). What makes these
computational techniques especially interesting is that they are all based on bisection or bracketing methods.
Therefore, they allow us to compute RG(f(XG) |B) and EG(f(XG) |B) up to any desired accuracy ε, using
only a finite number of evaluations of ρf,B(µ).

Besides enabling us to execute the aforementioned methods for computing conditional inferences, the
function ρf,B also allows us to check whether these methods apply, in the sense that we can use it to decide
whether or not PG(B) or PG(B) is strictly positive. On the one hand, for any µ < min f , we have that
PG(B) > 0 if and only if ρf,B(µ) > 0; on the other hand, for any µ > max f , we have that PG(B) > 0 if
and only if ρf,B(µ) < 0 [8, Section 3.3].

The crucial aspect about the techniques that we have just discussed is that they allow us to turn any
method for computing unconditional inferences into a method for computing conditional ones. In particular,
any method that allows us to compute ρf,B(µ) = EG

(
IB(XG)[f(XG)− µ]

)
immediately leads to a method

for computing RG(f(XG) | B) and EG(f(XG) | B), provided of course that the lower or upper probability
of B is strictly positive, respectively.

In the context of credal networks under epistemic irrelevance, these findings imply that algorithmic efforts
for computing conditional lower expectations can focus on devising an efficient method for evaluating ρirrf,B ,
defined by

ρirrf,B(µ) := Eirr
G

(
IB(XG)[f(XG)− µ]

)
for all µ ∈ R. (39)

If we are able to come up with such a method, it suffices to combine it with the techniques described
above to compute Eirr

G (f(XG) | B) and Rirr
G (f(XG) | B). For the former, it is necessary that P irr

G (B) > 0,
whereas P

irr

G (B) > 0 is a sufficient condition for the latter. Similar conclusions apply to credal networks
under complete independence.

For our present purposes, the most important remaining question is now how to compute ρirrf,B(µ). The
answer is surprisingly simple. Since we know from Equation (39) that this is an unconditional inference
problem, we can use any of the methods that have been presented earlier on in this paper. First of all,
for any f ∈ G(XG) and any B ∈ P∅(XG), ρirrf,B(µ) can be computed using the linear programming methods
of Section 6. However, since these methods scale badly, this approach only works for networks that are
sufficiently small. For larger networks, we therefore need to resort to recursive methods that are based on
the decomposition results in Section 7, possibly combined with a localised application of linear programming
to small sub-networks. In the remainder of this section, we illustrate the feasibility of such an approach by
means of several examples.

Our first example considers reverse conditioning in a Markov chain, that is, the computation of the lower
expectation of a function of the state at the current time point, conditional on the state value at some future
time point.

Example 13. Consider again the Markov chain of length ten that we considered in Example 6. We are
interested in computing Rirr

G (h(X1) | x10), for some h ∈ G(X1) and x10 ∈ X10. If P
irr

G (x10) is strictly positive,
then as we know from the discussion above, the only thing that is required to achieve this is an efficient
method for computing

ρirrh,x10
(µ) := Eirr

G

(
Ix10(X10)[h(X1)− µ]

)
.

In the remainder of this example, we will derive such a method.
We start by introducing three sequences of functions. For k = 10, we let h10 := h10 := Ix10

. Next, for all
k ∈ {1, . . . , 10}, we let hk := T k+1hk+1 and hk := −T k+1(−hk+1), with T k+1 as in Example 6. Finally, for
all k ∈ {1, . . . , n}, we let gk(X1, Xk) be defined by
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gk(x1, xk) :=

{
hk(xk)[h(x1)− µ] if h(x1) ≥ µ
hk(xk)[h(x1)− µ] if h(x1) ≤ µ

for all x1 ∈ X1 and xk ∈ Xk. (40)

For any k ∈ {2, . . . , 10}, x1 ∈ X1 and xk−1 ∈ Xk−1, we then find that

Ek|xk−1

(
gk(x1, Xk)

)
=

{
Ek|xk−1

(
hk(Xk)[h(x1)− µ]

)
if h(x1) ≥ µ

Ek|xk−1

(
hk(Xk−1)[h(x1)− µ]

)
if h(x1) ≤ µ

=

{
[h(x1)− µ]Ek|xk−1

(
hk(Xk)

)
if h(x1) ≥ µ

−[h(x1)− µ]Ek|xk−1

(
− hk(Xk)

)
if h(x1) ≤ µ

= gk−1(x1, xk−1). (41)

Now let f(XG) := g10(X1, X10) and adopt the notation from Example 6. It then follows from Equation (29)
that

Eirr
G (g10(X1, X10)) = Eirr

G (f(XG)) = Eirr
T (f9(XT )),

where

f9(xT ) := E10|x9

(
f(xT , X10)

)
= E10|x9

(
g10(x1, X10)

)
= g9(x1, x9) for all xT ∈ XT ,

using Equations (41) and (40) for the final equality. Hence, we find that Eirr
G (g10(X1, X10)) = Eirr

T (g9(X1, X9))
or equivalently, that

Eirr
{1,...,10}(g10(X1, X10)) = Eirr

{1,...,9}(g9(X1, X9)).

By repeating this argument over and over again, we eventually find that

Eirr
{1,...,10}(g10(X1, X10)) = Eirr

{1,...,9}(g9(X1, X9)) = Eirr
{1,...,8}(g8(X1, X8)) = · · · = Eirr

1 (g1(X1, X1)).

Hence, if we let g(X1) := g1(X1, X1), it follows that

ρirrh,x10
(µ) = Eirr

G

(
Ix10

(X10)[g(X1)− µ]
)

= Eirr
{1,...,10}(g10(X1, X10)) = Eirr

1 (g(X1)),

which, when combined with Equation (28), implies that

ρirrh,x10
(µ) = E1(g) where, for all x1 ∈ X1, g(x1) :=

{
h1(x1)[h(x1)− µ] if h(x1) ≥ µ
h1(x1)[h(x1)− µ] if h(x1) ≤ µ.

(42)

What is important about this expression is that it implies that ρirrh,x10
(µ) can be calculated very easily. We

simply have to compute hk and hk recursively, starting from k = 10 and moving backwards to k = 1, and
then, at the end, apply Equation (42). All of this requires only local computations, that is, evaluations of
the local lower expectations of the model.

Using this recursive procedure, we can now compute ρirrh,x10
(µ) for some µ > max f . If we find that

ρirrh,x10
(µ) is strictly negative, then as explained in the main text, we know that P

irr

G (x10) > 0 and we can
therefore use bracketing methods to compute Rirr

G (h(X1) | x10) up to any desired accuracy, using only a
finite—yet in some cases possible large—number of evaluations of ρirrh,x10

(µ). ♦

As a second example, we revisit the inference problems in Examples 9 and 10. As the reader may recall,
at that point, we were not yet able to completely solve these problems. At this point, however, using the
results in this section, solving these problems does become feasible.

Example 14. Consider again the inference problems in Examples 9 and 10, which consisted in computing
conditional lower expectations of the form Eirr

G (f(Xsn+1
) | xo1 , . . . , xon). In Example 9, the network was an

imprecise hidden Markov model, whereas in Example 10, we considered an imprecise second order hidden
Markov model. In both of these examples, rather than solving this inference problem, we instead focussed on
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the simpler problem of computing inferences of the form Eirr
G

(
Ixo1

(Xo1) · · · Ixon
(Xon)f(Xsn+1)

)
and claimed

that this would help us to compute the original inference problem. It should now be clear why this is indeed
the case.

The clue is that in order to use the techniques in this section to compute Eirr
G (f(Xsn+1

) | xo1 , . . . , xon) or
Rirr
G (f(Xsn+1

) | xo1 , . . . , xon), all that we require is a method for evaluating

ρirrf,xo1 ,··· ,xon
(µ) :=Eirr

G

(
Ixo1

(Xo1) · · · Ixon
(Xon)

[
f(Xsn+1)− µ

])
= Eirr

G

(
Ixo1

(Xo1) · · · Ixon
(Xon)fµ(Xsn+1)

)
for different values of µ ∈ R, where we let fµ := f − µ. This inference problem is exactly of the type for
which we provide a solution in Examples 9 and 10; it suffices to replace f by fµ. The methods that were
presented there can therefore be used to compute ρirrf,xo1

,··· ,xon
, which can then in turn be used to compute the

conditional lower expectations that we are after.
If P irr

G (xo1 , . . . , xon) is strictly positive, then as we know from Equation (37), it does not matter whether
we update by means of natural or regular extension. Furthermore, in that case, for the imprecise hidden
Markov model, and for the particular inference problem that we are considering here, it also does not matter
whether we consider a credal network under epistemic irrelevance or complete independence [34, Theorem 3].
For imprecise second-order hidden Markov models though, no such equivalence is known to hold. ♦

The techniques that we have employed in Example 13 and 14 are very similar to the ones that were used
in Reference [24] to develop algorithms for credal trees under epistemic irrelevance. Essentially, the main
idea is to first use Equation (39) to turn the conditional inference problem into an unconditional one, and
then to solve the remaining unconditional inference problem by a recursive decomposition scheme. In fact,
the algorithms in Reference [24] can all be derived from our results. The converse is however not true, for
the following three reasons.

Firstly, our decomposition properties do not require any positivity conditions, whereas the results in
Reference [24] only apply to credal networks of which the local upper probabilities are strictly positive.
Secondly, our methods are not restricted to credal networks of which the graphical structure is a tree:
consider for example the inferences in Examples 4 or 5, the dynamical network in Example 7, the second
order hidden Markov model in Examples 10 and 14, the factorisation results in Example 11, as well as
the examples further on in this section. Thirdly, for conditional lower expectations, the algorithms in
Reference [24] are restricted to functions that depend on a single variable. As can be seen from Example 7,
our methods do not require such a restriction. The following simple example provides a second illustration
that this is indeed not required.

Example 15. Let G := {1, 2, 3}, consider a credal network of which the graph is depicted in Figure 6,
and assume that we are interested in computing Rirr

G (g(X1, X2) | x3) or Eirr
G (g(X1, X2) | x3), for some

g ∈ G(X{1,2}) and x3 ∈ X3. In order to do that by means of the techniques in this section, all we have to do
is come up with a method for computing

ρirrg,x3
(µ) := Eirr

G

(
Ix3

(X3)[g(X1, X2)− µ]
)
.

However, we already know from Example 5 how to do this. If we let f(XG) := Ix3(X3)[g(X1, X2) − µ], it
follows from the discussion in Example 5 that

ρirrg,x3
(µ) = Eirr

G

(
Ix3(X3)[g(X1, X2)− µ]

)
= Eirr

G (f(XG)) = Eirr
{1,2}(hµ(X1, X2)),

where, for all x1 ∈ X1 and x2 ∈ X2,

hµ(x1, x2) := Eirr
3|(x1,x2)(f(x1, x2, X3)) =

{
[g(x1, x2)− µ]P 3|(x1,x2)

(x3) if g(x1, x2) ≥ µ
[g(x1, x2)− µ]P 3|(x1,x2)(x3) if g(x1, x2) ≤ µ.

The computation of hµ is trivial because it only requires the evaluation of local lower and upper probabilities.
Therefore, the problem has been reduced to that of computing a lower expectation Eirr

{1,2}(hµ(X1, X2) in a
credal network that consists of two disconnected nodes. This reduced problem can easily be solved by means
of the linear programming techniques in Section 6. ♦
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In this example, as well as in Example 7, the function for which we are computing the conditional lower
expectation depends on only two variables. Since this is only a minor step beyond the case of a single
variable, one could interpret this as a sign that these methods scale badly to situations where the function
of interest depends on many variables. This is not the case though. Our reason for providing these rather
simple examples is because they are relatively easy to explain, thereby allowing us to focus on conveying
intuition. However, they are by no means representative for the frontier of the types of conditional lower
expectations that can be computed. For example, for an imprecise hidden Markov model, similar techniques
can also be used to estimate a sequence of hidden states based on the corresponding sequence of observation
variables [21], which requires computing conditional lower expectations of functions that depend on all state
variables.

In any case, as illustrated in our examples so far, the function in Equation (39) is an extremely useful
tool when it comes to the computation of conditional lower expectations. However, this should not be
taken to mean that the first step in the computation of a conditional lower expectation should always be to
apply Equation (39). Indeed, it is often possible to first reduce the size of the problem—using Theorem 3,
Theorem 10 or Corollary 11—and to only afterwards apply Equation (39) to a sub-network. In fact, in
some cases, as we have seen in Examples 4 and 7, it is possible to turn a conditional inference problem into
an unconditional inference problem in a sub-network, thereby dispensing with the need for Equation (39)
altogether. Our next example illustrates why, in the case of Example 4, such an approach is indeed to be
preferred over a direct application of Equation (39).

Example 16. Consider once more the inference problem of Example 4, which consisted in computing a
conditional lower expectation of the form Eirr

G (h(X9) | x3, x4, x6) for a credal network whose graph is depicted
in Figure 1. By applying Theorem 3, for K = {5, 7, 9}, BK = XK and BN(K) = (X6 = x6), it was shown
there that

Eirr
G (h(X9) | x3, x4, x6) = Eirr

K|xΠ(K)
(h(X9)), (43)

thereby transforming the problem into an unconditional inference problem in a smaller network that has only
three nodes, which could then be computed using the recursive formulas that were derived in Example 6.

Given the results in this section, we could of course also try to compute Eirr
G (h(X9) | x3, x4, x6) by applying

a bracketing procedure to the function ρh,x3,x4,x6
, defined by

ρh,x3,x4,x6(µ) := Eirr
G

(
Ix3(X3)Ix4(X4)Ix6(X6)[h(X9)− µ]

)
for all µ ∈ R. (44)

However, this would not be as efficient as using Equation (43), for the following two reasons. First of all,
it would require us to come up with a method for computing ρh,x3,x4,x6

(µ). This is far from easy. The
linear programming methods in Section 6 would most likely run into scaling problems here, and although we
might be able to partially decompose the problem by applying Corollary 6, the resulting subproblems could
still be non-trivial to compute. Secondly, in order for this approach to be applicable, the lower probability
P irr
G (x3, x4, x6) must be strictly positive, which may not be the case. Both of these problems can be avoided

by using Equation (43) instead.
Similar observations can be made if we update by means up regular extension instead of natural extension.

The only difference is that the role of Theorem 3 is replaced by Corollary 11. In particular, if we apply
Corollary 11 for K = {5, 7, 9}, BK = XK and BN(K) = (X6 = x6), we find that

Rirr
G (h(X9) | x3, x4, x6) = Eirr

K|xΠ(K)
(h(X9)).

By comparing this result with Equation (43), we see that in this example, despite the fact that we are applying
a different updating rule, the result of the inference nevertheless remains the same. Furthermore, as before,
the direct use of Equation (43) is to be preferred over an indirect method that is based on Equation (44). ♦

Completely analogous conclusions can be drawn for the inference problem in Example 7. Again, it makes
no difference whether we use the natural or the regular extension, and the use of Theorem 3 or Corollary 11
is be preferred over an indirect approach that is based on Equation (44).

36



We end with an example where the two approaches are combined, in the sense that we first reduce the
size of the problem—using Theorem 3 or Corollary 11—and then tackle the remaining problem by means
of Equation (39). The specific problem that we consider is that of computing the lower expectation of a
function that depends on a single variable, conditional on the value of all the other variables in the network.
Remarkably, our solution applies to credal networks with arbitrary graphs.

Example 17. Consider an arbitrary credal network under epistemic irrelevance, choose any node q ∈ G
and let E := G \ {q} be the set of remaining nodes. We consider the problem of computing a conditional
lower expectation of the form Eirr

G (f(Xq) | xE) or Rirr
G (f(Xq) | xE), with f ∈ G(Xq) and xE ∈ XE.

Solving this inference problem is trivial if q is a leaf node. We then have that ΠN(q) = E and it therefore
follows directly from Equations (18) and (38) that

Eirr
G (f(Xq)cxE) = Rirr

G (f(Xq)cxE) = Eq|xΠ(q)
(f).

When q is not a leaf node, the problem can be solved as follows.
Let K := {q}∪D(q). By applying Theorems 3 and 10 for BK = {xD(q)} and BN(K) = {xN(K)}, we find

that
Eirr
G (f(Xq) | xE) = Eirr

K|xΠ(K)
(f(Xq) | xD(q))

and

Rirr
G (f(Xq) | xE) =

{
Rirr
K|xΠ(K)

(f(Xq) | xD(q)) if P
irr

ΠN(q)(xΠN(q)) > 0

Eirr
K|xΠ(K)

(f(Xq) | xD(q)) if P
irr

ΠN(q)(xΠN(q)) = 0,

where

P
irr

ΠN(q)(xΠN(q)) =
∏

s∈ΠN(q)

P scxΠ(s)
(xs)

because of Equation (34). In this way, we have reduced the original inference problem to a similar but smaller
sized inference problem in the sub-network that corresponds to K and xΠ (K). The remaining task is now to
compute Eirr

K|xΠ(K)
(f(Xq) | xD(q)) or Rirr

K|xΠ(K)
(f(Xq) | xD(q)).

If the lower probability P irr
K|xΠ(K)

(xD(q)) or upper probability P
irr

K|xΠ(K)
(xD(q)) is strictly positive, these

computations can be performed by applying the techniques in this section to the subnetwork that corresponds
to K and xΠ (K). All that we require is an efficient method for evaluating the real-valued function ρirrf, xK |xΠ(K)

,

defined by
ρirrf, xK |xΠ(K)

(µ) := Eirr
KcxΠ(K)

(
I{xD(q)}(XD(q))[f(Xq)− µ]

)
for all µ ∈ R.

So let us fix some µ ∈ R. Since q is not a leaf node of the network, we know that D(q) 6= ∅. Therefore, if
we apply Theorem 4 to the sub-network that corresponds to K and xΠ (K), for S = D(q) and T = {q}, we
find that

ρirrf, xK |xΠ(K)
(µ) = Eirr

K|xΠ(K)

(
I{xS}(XS)[f(Xq)− µ]

)
= Eirr

T |xΠ(T )
(gµ(XT )) = Eirr

q|xΠ(q)
(gµ(Xq)) = Eq|xΠ(q)

(gµ), (45)

where the final equality follows from Equation (28) and where gµ is a function on Xq, defined for all xq ∈ Xq
by

gµ(xq) := Eirr
S|xΠ(S)

(
I{xS}(XS)[f(xq)− µ]

)
=

{
[f(xq)− µ]P irr

S|xΠ(S)
(xS) if f(xq) ≥ µ

[f(xq)− µ]P
irr

S|xΠ(S)
(xS) if f(xq) ≤ µ.

37



The reason why this function only depends on xq is because for all other s ∈ Π (S), xs is uniquely determined
by xE. Finally, we can simplify the expression for gµ even further, by applying Equation (34) to the sub-
network that corresponds to S and xΠ (S). In this way we find that

gµ(xq) =


[f(xq)− µ]

∏
s∈S

P scxΠ(s)
(xs) if f(xq) ≥ µ

[f(xq)− µ]
∏
s∈S

P scxΠ(s)
(xs) if f(xq) ≤ µ

for all xq ∈ Xq.

This expression implies that the computational complexity of evaluating Equation (45) is linear in |S|,
or equivalently, in the number of descendants of q. For this reason, as explained in this section, a simple
bracketing method will allow us to compute Eirr

K|xΠ(K)
(f(Xq) | xD(q)) or Rirr

K|xΠ(K)
(f(Xq) | xD(q)), and therefore

also Eirr
G (f(Xq) | xE) or Rirr

G (f(Xq) | xE). ♦

10. Conclusions and a Brief Look Beyond the Horizon

The main conclusion of this paper is that credal networks under epistemic irrelevance satisfy surprisingly
many powerful theoretical properties, and that these properties can be exploited to develop efficient compu-
tational methods, for various types of inference problems that were previously presumed to be intractable.
Since many of these inference problems are NP-hard in credal networks under complete or strong inde-
pendence, these results turn credal networks under epistemic irrelevance into a serious, practically feasible
alternative that should enable practitioners to solve real-life problems for which the corresponding necessary
inferences were hitherto regarded as intractable.

On the theoretical side, we would like to highlight the following contributions. First of all, we have shown
that full conditional probability measures can be used to develop a rigorous yet simple definition for a credal
network under epistemic irrelevance and its irrelevant natural and regular extension, without having to
impose strict positivity assumptions. Secondly, these extensions were shown to satisfy various properties that
can be used to decompose large inference problems into smaller ones, including marginalisation properties for
sub-networks, a law of iterated lower expectation, and specific types of factorisation and external additivity.
Thirdly, similarly to how d-separation implies independence in a Bayesian network, we have seen that in the
irrelevant natural extension of a credal network, AD-separation implies epistemic irrelevance.

From a computational point of view, our most important contribution is perhaps the realisation that
inferences in credal networks under epistemic irrelevance can be computed by means of several techniques,
and that all of these techniques can be fruitfully combined with one another. On the one hand, we have shown
that the recursive techniques of De Cooman et al. [24] can be extended in two ways: they are not limited to
credal trees, nor ar they limited to inferences about a single variable. On the other hand, we have seen that
the linear programming methods of Cozman [11] do not require any positivity conditions. Furthermore, by
applying these linear programming methods to sub-networks, they can be succesfully combined with the
recursive techniques that were mentioned before. Finally, through the use of Lavine’s bracketing algorithm,
all of these techniques can be extended to the conditional case.

As far as future work is concerned, a first important task is to use the techniques in this paper to develop
new efficient algorithms for credal networks epistemic irrelevance, for various types of inference problems.
So far, most existing algorithms are restricted to networks whose graph is a tree, and are fairly limited in the
type of inference problems that they consider [5, 21, 24, 33]. The only exception seems to be Reference [17,
Chapter 7], which considers credal networks with a recursively decomposable graph—a generalisation of a
tree. Furthermore, all existing algorithms are based on decomposition techniques, and none of them apply
linear programming methods to sub-networks. In contrast, the examples in this paper clearly illustrate that
these restrictions are by no means necessary. Therefore, it seems to us that the search for efficient inference
algorithms in credal networks under epistemic irrelevance is wide open, and that significant improvements
upon the state of the art should still be possible. Furthermore, since existing algorithms all focus on exact
computations, the design of approximate algorithms should definitely be considered as well.
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Another important future line of research would be to apply credal networks under epistemic irrelevance
to real applications, in situations where the defining assumptions of a Bayesian network—exactly specified
probabilities and exact independence assessments—are unrealistic. In principle, this is already feasible now:
the examples in this paper and the algorithms in References [17, 24] should already allow practitioners to
solve large classes of problems that are relevant to their applications. However, in practice, two additional
steps are needed. First of all, it is necessary to implement existing and/or new algorithms, and to develop
user-friendly software to compute with them; no such software currently exists. Secondly, it should be
thoroughly tested whether the bounds that are computed by these algorithms are informative enough to be
useful in practice. Indeed, since epistemic irrelevance imposes less stringent constraints than complete or
strong independence, the bounds of a credal network under epistemic irrelevance can be more conservative
than those that correspond to other types of credal networks, and it may therefore happen that they are too
conservative to be of practical use. Although this type of behaviour did not occur in the proofs of concept
in References [5, 21], it remains to be seen whether this will be the case in other applications as well.
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[21] Jasper De Bock and Gert de Cooman. An efficient algorithm for estimating state sequences in imprecise hidden Markov
models. Journal of Artificial Intelligence Research, 50:189–233, 2014.

[22] Jasper De Bock and Gert de Cooman. Credal networks under epistemic irrelevance: the sets of desirable gambles approach.
International Journal of Approximate Reasoning, 56:178–207, 2015.

[23] Cassio P. de Campos and Fabio G. Cozman. Computing lower and upper expectations under epistemic independence.
International Journal of Approximate Reasoning, 44(3):244–260, 2007.

[24] Gert de Cooman, Filip Hermans, Alessandro Antonucci, and Marco Zaffalon. Epistemic irrelevance in credal nets: the
case of imprecise Markov trees. International Journal of Approximate Reasoning, 51(9):1029–1052, 2010.

[25] Gert de Cooman, Filip Hermans, and Erik Quaeghebeur. Imprecise Markov chains and their limit behaviour. Probability
in the Engineering and Informational Sciences, 23(4):597–635, October 2009.

[26] Gert de Cooman, Enrique Miranda, and Marco Zaffalon. Independent natural extension. Artificial Intelligence,
175(12):1911–1950, 2011.

[27] Lester E. Dubins. Finitely additive conditional probabilities, conglomerability and disintegrations. The Annals of Proba-
bility, 3(1):89–99, 1975.

[28] Enrico Fagiuoli and Marco Zaffalon. 2U: an exact interval propagation algorithm for polytrees with binary variables.
Artificial Intelligence, 106(1):77–107, 1998.
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Appendix A. Pointers to the proofs of the results

The results in this paper have already been proved in Reference [17]. However, many of these proofs
rely heavily on the use of sets of desirable gambles [40, 52] or coherent lower previsions [35, 47, 49], two
types of uncertainty models that fall beyond the scope of our present contribution. Repeating these proofs
here would require a rather massive appendix, filled with technical lemmas that add little intuition. For
example, including the lemmas that precede it, our proof for Theorem 5 spans about twenty pages. For
this reason, we prefer to provide pointers to the proofs of our results rather than to repeat them explicitly.
The interested reader is cordially invited to follow these pointers, and to acquaint him- or herself with
the desirability- and coherence-based development of credal networks under epistemic irrelevance that is
presented in Reference [17].

The linear programming results in Section 6 were already reported on in Reference [19] without proof.
Proofs can be found in Reference [17]; Proposition 1 corresponds to [17, Corollary 87], whereas Theorem 2
corresponds to [17, Theorem 88]. Under strict positivity conditions, similar properties have also been
published in Reference [11].

Simplified versions of most of the decomposition properties in Section 7 have been published with proof
in Reference [22], but these were presented solely in terms of sets of desirable gambles. Extended versions of
these desirable gambles results are available in [17]. They serve as a basis for the lower expectation versions
that were presented here, the proofs of which can also be found in [17]. Theorem 3 corresponds to the
second case in [17, Corollary 60]. Theorem 4 corresponds to the first case in [17, Proposition 71]. Theorem 5
corresponds to [17, Proposition 56], whereas Corollaries 6 and 7 correspond to [17, Corollary 57] and [17,
Corollary 59], respectively.

The proofs for the results in Section 4 are also given in Reference [17]. Proposition 8 corresponds to [17,
Theorem 64], whereas Theorem 9 corresponds to the second case in [17, Corollary 66].

Finally, for the results in Section 9, again, the proofs are given in Reference [17]. Theorem 10 corresponds
to [17, Theorem 73] and Corollary 11 corresponds to [17, Corollary 74].
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