
ICTMCS: EFFICIENT COMPUTATIONAL METHODS WITH GUARANTEED ERROR BOUNDS

Imprecise Continuous-Time Markov Chains:
Efficient Computational Methods with Guaranteed Error Bounds

Alexander Erreygers ALEXANDER.ERREYGERS@UGENT.BE
Ghent University, SMACS Research Group

Jasper De Bock JASPER.DEBOCK@UGENT.BE

Ghent University - imec, IDLab, ELIS

Abstract
Imprecise continuous-time Markov chains are a robust type of continuous-time Markov chains that
allow for partially specified time-dependent parameters. Computing inferences for them requires the
solution of a non-linear differential equation. As there is no general analytical expression for this
solution, efficient numerical approximation methods are essential to the applicability of this model.
We here improve the uniform approximation method of Krak et al. (2016) in two ways and propose
a novel and more efficient adaptive approximation method. For ergodic chains, we also provide a
method that allows us to approximate stationary distributions up to any desired maximal error.
Keywords: Imprecise continuous-time Markov chain; lower transition operator; lower transition
rate operator; approximation method; ergodicity; coefficient of ergodicity.

1. Introduction

Markov chains are a popular type of stochastic processes that can be used to model a variety of
systems with uncertain dynamics, both in discrete and continuous time. In many applications,
however, the core assumption of a Markov chain—i.e., the Markov property—is not entirely justified.
Moreover, it is often difficult to exactly determine the parameters that characterise the Markov chain.
In an effort to handle these modelling errors in an elegant manner, several authors have recently
turned to imprecise probabilities (Škulj and Hable, 2013; Hermans and de Cooman, 2012; Škulj,
2015; Krak et al., 2016; De Bock, 2017).

As Krak et al. (2016) thoroughly demonstrate, making inferences about an imprecise continuous-
time Markov chain—determining lower and upper expectations or probabilities—requires the solution
of a non-linear vector differential equation. To the best of our knowledge, this differential equation
cannot be solved analytically, at least not in general. Krak et al. (2016) proposed a method to
numerically approximate the solution of the differential equation, and argued that it outperforms
the approximation method that Škulj (2015) previously introduced. One of the main results of this
contribution is a novel approximation method that outperforms that of Krak et al. (2016).

An important property—both theoretically and practically—of continuous-time Markov chains
is the behaviour of the solution of the differential equation as the time parameter recedes to infinity.
If regardless of the initial condition the solution converges, we say that the chain is ergodic. We
show that in this case the approximation is guaranteed to converge as well. This constitutes the
second main result of this contribution and serves as a motivation behind the novel approximation
method. Furthermore, we also quantify a worst-case convergence rate for the approximation. This
unites the work of Škulj (2015), who studied the rate of convergence for discrete-time Markov chains,
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and De Bock (2017), who studied the ergodic behaviour of continuous-time Markov chains from a
qualitative point of view. One of the uses of our worst-case convergence rate is that it allows us to
approximate the limit value of the solution up to a guaranteed error.

In order to comply with the page limit, we do not provide any proofs for our statements. We refer
the interested reader to the appendix of (Erreygers and De Bock, 2017), an extended version of this
contribution that is available on arXiv.

2. Mathematical Preliminaries

Throughout this contribution, we denote the set of real, non-negative real and strictly positive real
numbers by R, R≥0 and R>0, respectively. The set of natural numbers is denoted by N, if we include
zero we write N0 := N ∪ {0}. For any set S, we let |S| denote its cardinality. If a and b are two real
numbers, we say that a is lower (greater) than b if a ≤ b (a ≥ b), and that a is strictly lower (greater)
than b if a < b (a > b).

2.1 Gambles and Norms

We consider a finite state space X , and are mainly concerned with real-valued functions on X . All of
these real-valued functions on X are collected in the set L(X ), which is a vector space. If we identify
the state space X with {1, . . . , |X |}, then any function f ∈ L(X ) can be identified with a vector: for
all x ∈ X , the x-component of this vector is f(x). A special function on X is the indicator IA of an
event A. For any A ⊆ X , it is defined for all x ∈ X as IA(x) = 1 if x ∈ A and IA(x) = 0 otherwise.
In order not to obfuscate the notation too much, for any y ∈ X we write Iy instead of I{y}. If it is
required from the context, we will also identify the real number γ ∈ R with the map γ from X to R,
defined as γ(x) = γ for all x ∈ X .

We provide the set L(X ) of functions with the standard maximum norm ‖·‖, defined for all
f ∈ L(X ) as ‖f‖ := max {|f(x)| : x ∈ X}. A seminorm that captures the variation of f ∈ L(X )
will also be of use; we therefore define the variation seminorm ‖f‖v := max f −min f . Since the
value ‖f‖v /2 occurs often in formulas, we introduce the shorthand notation ‖f‖c := ‖f‖v /2.

2.2 Non-Negatively Homogeneous Operators

An operator A that maps L(X ) to L(X ) is non-negatively homogeneous if for all µ ∈ R≥0 and all
f ∈ L(X ), A(µf) = µAf . The maximum norm ‖·‖ for functions induces an operator norm:

‖A‖ := sup{‖Af‖ : f ∈ L(X ), ‖f‖ = 1}.

If for all µ ∈ R and all f, g ∈ L(X ), A(µf + g) = µAf +Ag, then the operator A is linear. In that
case, it can be identified with a matrix of dimension |X | × |X |, the (x, y)-component of which is
[AIy](x). The identity operator I is an important special case, defined for all f ∈ L(X ) as If := f .

Two types of non-negatively homogeneous operators play a vital role in the theory of imprecise
Markov chains: lower transition operators and lower transition rate operators.

Definition 1 An operator T from L(X ) to L(X ) is called a lower transition operator if for all
f ∈ L(X ) and all µ ∈ R≥0:

L1: Tf ≥ min f ; L2: T (f + g) ≥ Tf + Tg; L3: T (µf) = µTf.
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Every lower transition operator T has a conjugate upper transition operator T , defined for all
f ∈ L(X ) as Tf := −T (−f).

Definition 2 An operator Q from L(X ) to L(X ) is called a lower transition rate operator if for any
f, g ∈ L(X ), any µ ∈ R≥0, any γ ∈ R and any x, y ∈ X such that x 6= y:

R1: Qγ = 0; R2: Q(f + g) ≥ Qf +Qg; R3: Q(µf) = µQf ; R4: [QIx](y) ≥ 0.

The conjugate lower transition rate operator Q is defined for all f ∈ L(X ) as Qf := −Q(−f).
As will become clear in Section 3, lower transition operators and lower transition rate operators

are tightly linked. For instance, we can use a lower transition rate operator to construct a lower
transition operator. One way is to use Eqn. (1) further on. Another one is given in the following
proposition, which is a strengthened version of (De Bock, 2017, Proposition 5).

Proposition 3 Consider any lower transition rate operator Q and any δ ∈ R≥0. Then the operator
(I + δQ) is a lower transition operator if and only if δ

∥∥Q∥∥ ≤ 2.

We end this section with the first—although minor—novel result of this contribution. The norm
of a lower transition rate operator is essential for all the approximation methods that we will discuss.
The following proposition supplies us with an easy formula for determining it.

Proposition 4 Let Q be a lower transition rate operator. Then
∥∥Q∥∥ = 2 max{

∣∣[QIx](x)
∣∣ : x ∈ X}.

Example 1 Consider a binary state space X = {0, 1} and two closed intervals [q
0
, q0] ⊂ R≥0 and

[q
1
, q1] ⊂ R≥0. Let

Qf := min

{[
q0(f(1)− f(0))
q1(f(0)− f(1))

]
: q0 ∈ [q

0
, q0], q1 ∈ [q

1
, q1]

}
for all f ∈ L(X ).

Then one can easily verify that Q is a lower transition rate operator.
Krak et al. (2016) also consider a running example with a binary state space, but they let

X := {healthy,sick}. We here identify healthy with 0 and sick with 1. In (Krak et al.,
2016, Example 18), they propose the following values for the transition rates: [q

0
, q0] := [1/52, 3/52]

and [q
1
, q1] := [1/2, 2]. It takes Krak et al. a lot of work to determine the exact value of the norm of

Q, see (Krak et al., 2016, Example 19). We simply use Proposition 4:
∥∥Q∥∥ = 2 max{3/52, 2} = 4.

3. Imprecise Continuous-Time Markov Chains

For any lower transition rate operator Q and any f ∈ L(X ), Škulj (2015) has shown that the
differential equation

d

dt
T tf = QT tf. (1)

with initial condition T 0f := f has a unique solution for all t ∈ R≥0. Later, De Bock (2017) proved
that the time-dependent operator T t itself satisfies a similar differential equation, and that it is a
lower transition operator. Finding the unique solution of Eqn. (1) is non-trivial. Fortunately, we can
approximate this solution, as by (De Bock, 2017, Proposition 10)

T t = lim
n→∞

(
I +

t

n
Q

)n
. (2)
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Example 2 In the simple case of Example 1, we can use Eqn. (2) to obtain analytical expressions
for the solution of Eqn. (1). Assume that q

0
+ q1 > 0 and fix some t ∈ R≥0. Then

[T tf ](0) = f(0) + q
0
h(t) and [T tf ](1) = f(1)− q1h(t) for all f ∈ L(X ) with f(0) ≤ f(1),

where h(t) := ‖f‖v (q
0

+ q1)−1
(
1− e−t(q0+q1)). The case f(0) ≥ f(1) yields similar expressions.

For a linear lower transition rate operator Q—i.e., if it is a transition rate matrix Q—Eqn. (2)
reduces to the definition of the matrix exponential. It is well-known—see (Anderson, 1991)—
that this matrix exponential Tt = etQ can be interpreted as the transition matrix at time t of a
time-homogeneous or stationary continuous-time Markov chain: the (x, y)-component of Tt is the
probability of being in state y at time t if the chain started in state x at time 0. Therefore, it follows
that the expectation of the function f ∈ L(X ) at time t ∈ R≥0 conditional on the initial state x ∈ X ,
denoted by E(f(Xt)|X0 = x), is equal to [Ttf ](x).

As Eqn. (2) is a non-linear generalisation of the definition of the matrix exponential, we can
interpret T t as the non-linear generalisation of the matrix exponential Tt = etQ. Extending this
parallel, we might interpret T t as the non-linear generalisation of the transition matrix—i.e., as the
lower transition operator—at time t of a generalised continuous-time Markov chain. In fact, Krak
et al. (2016) prove that this is the case. They show that—under some conditions on Q—[T tf ](x)
can be interpreted as the tightest lower bound for E(f(Xt)|X0 = x) with respect to a set of—not
necessarily Markovian—stochastic processes that are consistent with Q. Krak et al. (2016) argue
that, just like a transition rate matrix Q characterises a (precise) continuous-time Markov chain, a
lower transition rate operator Q characterises a so-called imprecise continuous-time Markov chain.

The main objective of this contribution is to determine T tf for some f ∈ L(X ) and some
t ∈ R>0. Our motivation is that, from an applied point of view on imprecise continuous-time Markov
chains, what one is most interested in are tight lower and upper bounds on expectations of the form
E(f(Xt)|X0 = x). As explained above, the lower bound is given by E(f(Xt)|X0 = x) = [T tf ](x).
Similarly, the upper bound is given by E(f(Xt)|X0 = x) = −[T t(−f)](x). Note that the lower
(or upper) probability of an event A ⊆ X conditional on the initial state x is a special case of a
lower (or upper) expectation: P(Xt ∈ A|X0 = x) = E(IA(Xt)|X0 = x) and similarly for the upper
probability. Hence, for the sake of generality we can focus on T tf and forget about its interpretation.
As in most cases analytically solving Eqn. (1) is infeasible or even impossible, we resort to methods
that yield an approximation up to some guaranteed maximal error.

4. Approximation Methods

Škulj (2015) was, to the best of our knowledge, the first to propose methods that approximate the
solution T tf of Eqn. (1). He proposes three methods: one with a uniform grid, a second with an
adaptive grid and a third that is a combination of the previous two. In essence, he determines a step
size δ and then approximates T t+δf with eδQT tf , where Q is a transition rate matrix determined
fromQ and T tf . One drawback of this method is that it needs the matrix exponential eδQ, which—in
general—needs to be approximated as well. Škulj (2015) mentions that his methods turn out to be
quite computationally heavy, even if the uniform and adaptive methods are combined.

We consider two alternative approximation methods—one with a uniform grid and one with an
adaptive grid—that both work in the same way. First, we pick a small step δ1 ∈ R≥0 and apply the
operator (I + δ1Q) to the function g0 = f , resulting in a function g1 := (I + δ1Q)f . Recall from
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Proposition 3 that if we want (I + δ1Q) to be a lower transition operator, then we need to demand
that δ1

∥∥Q∥∥ ≤ 2. Next, we pick a (possibly different) step δ2 ∈ R≥0 such that δ2

∥∥Q∥∥ ≤ 2 and apply
the lower transition operator (I + δ2Q) to the function g1, resulting in a function g2 := (I + δ2Q)g1.
If we continue this process until the sum of all the small steps is equal to t, then we end up with an
approximation for T tf . More formally, let s := (δ1, . . . , δk) denote a sequence in R≥0 such that, for
all i ∈ {1, . . . , k}, δi

∥∥Q∥∥ ≤ 2. Using this sequence s we define the approximating lower transition
operator

Φ(s) := (I + δkQ) · · · (I + δ1Q).

What we are looking for is a convenient way to determine the sequence s such that the error
‖T tf − Φ(s)f‖ is guaranteed to be lower than some desired maximal error ε ∈ R>0.

4.1 Using a Uniform Grid

Krak et al. (2016) provide one way to determine the sequence s. They assume a uniform grid, in the
sense that all elements of the sequence s are equal to δ. The step size δ is completely determined
by the desired maximal error ε, the time t, the variation norm of the function f and the norm of
Q; (Krak et al., 2016, Proposition 8.5) guarantees that the actual error is lower than ε. Algorithm 1
provides a slightly improved version of (Krak et al., 2016, Algorithm 1). The improvement is due to
Proposition 3: we demand that n ≥ t

∥∥Q∥∥ /2 instead of n ≥ t
∥∥Q∥∥.

Algorithm 1: Uniform approximation
Data: A lower transition rate operator Q, a function f ∈ L(X ), a maximal error ε ∈ R>0, and

a time point t ∈ R≥0.
Result: T tf ± ε

1 g0 ← f
2 if ‖f‖c = 0 or

∥∥Q∥∥ = 0 or t = 0 then (n, δ)← (0, 0)

3 else
4 n←

⌈
max{t

∥∥Q∥∥ /2, t2 ∥∥Q∥∥2 ‖f‖c /ε}
⌉

5 δ ← t/n
6 for i = 0, . . . , n− 1 do
7 gi+1 ← gi + δQgi
8 return gn

More formally, for any t ∈ R≥0 and any n ∈ N such that t
∥∥Q∥∥ ≤ 2n, we consider the uniformly

approximating lower transition operator

Ψt(n) :=

(
I +

t

n
Q

)n
.

As a special case, we define Ψt(0) := I . The following theorem then guarantees that the choice of n
in Algorithm 1 results in an error ‖T tf −Ψt(n)f‖ that is lower than the desired maximal error ε.

Theorem 5 LetQ be a lower transition rate operator and fix some f ∈ L(X ), t ∈ R≥0 and ε ∈ R>0.
If we use Algorithm 1 to determine n, δ and g0, . . . , gn, then we are guaranteed that

‖T tf −Ψt(n)f‖ = ‖T tf − gn‖ ≤ ε′ := δ2
∥∥Q∥∥2

n−1∑
i=0

‖gi‖c ≤ ε.
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Table 1: Comparison of the presented approximation methods, obtained using a naive, unoptimised
implementation of the algorithms in Python. N is the total number of iterations, Dε (Dε′)
is the average duration—in seconds, averaged over 50 independent runs—without (with)
keeping track of ε′, and εa is the actual error. The Python code is made available at
github.com/alexander-e/ictmc.

Method N Dε Dε′ ε′ × 103 εa × 103

Uniform 8,000 0.0345 0.0574 0.430 0.0335
Uniform 250 0.00171 0.0264 13.8 1.07

Adaptive with m = 1 3,437 0.0371 0.0428 1.000 0.108
Adaptive with m = 20 3,456 0.0143 0.0254 0.992 0.107

Uniform ergodic with m = 1 6,133 0.0264 0.0449 0.560 0.0437

Theorem 5 is an extension of (Krak et al., 2016, Proposition 8.5). We already mentioned that the
demand n ≥ t

∥∥Q∥∥ can be relaxed to n ≥ t
∥∥Q∥∥ /2. Furthermore, it turns out that we can compute

an upper bound ε′ on the error that is (possibly) lower than the desired maximal error ε. If we want
to determine this ε′ while running Algorithm 1, we simply need to add ε′ ← 0 to line 1 and insert
ε′ ← ε′ + δ2

∥∥Q∥∥2 ‖gi‖c just before line 7.

Example 3 We again consider the simple case of Example 1 and illustrate the use of Theorem 5 with
a numerical example based on (Krak et al., 2016, Example 20). Krak et al. (2016) use Algorithm 1
to approximate T 1I1, and find that n = 8,000 guarantees an error lower than the desired maximal
error ε := 1× 10−3. As reported in Table 1, we use Theorem 5 to compute ε′. We find that
ε′ ≈ 0.430× 10−3, which is approximately a factor two smaller than the desired maximal error ε.

In this case, since we know the analytical expression for T 1I1 from Example 2, we can determine
the actual error εa = ‖T 1I1 −Ψ1(8000)I1‖. Quite remarkably, the actual error is approximately
3.35× 10−5, which is roughly 30 times smaller than the desired maximal error. This leads us to
think that the number of iterations used by the uniform method is too high. In fact, we find that using
as few as 250 iterations—roughly 8,000/30—already results in an actual error that is approximately
equal to the desired one: ‖T 1I1 −Ψ1(250)I1‖ ≈ 1.07× 10−3.

4.2 Using an Adaptive Grid

In Example 3, we noticed that the maximal desired error was already satisfied for a uniform grid that
was much coarser than that constructed by Algorithm 1. Because of this, we are led to believe that
we can find a better approximation method than the uniform method of Algorithm 1.

To this end, we now consider grids where, for some integer m, every m consecutive time steps in
the grid are equal. In particular, we consider a sequence δ1, . . . , δn in R≥0 and some k ∈ N such that
1 ≤ k ≤ m and, for all i ∈ {1, . . . , n}, δi

∥∥Q∥∥ ≤ 2. From such a sequence, we then construct the
m-fold approximating lower transition operator:

Φm,k(δ1, . . . , δn) := (I + δnQ)k(I + δn−1Q)m · · · (I + δ1Q)m,

6
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where if n = 1 only (I + δ1Q)k remains and if n = 2 only (I + δ2Q)k(I + δ1Q)m remains.
The uniform approximation method of before is a special case of the m-fold approximating lower

transition operator; a more interesting method to construct an m-fold approximation is Algorithm 2.
In this algorithm, we re-evaluate the time step every m iterations, possibly increasing its length.

Algorithm 2: Adaptive approximation
Data: A lower transition rate operator Q, a gamble f ∈ L(X ), an integer m ∈ N, a tolerance

ε ∈ R>0, and a time period t ∈ R≥0.
Result: T tf ± ε

1 (g(0,m),∆, i)← (f, t, 0)

2 if ‖f‖c = 0 or
∥∥Q∥∥ = 0 or t = 0 then (n, k)← (0,m)

3 else
4 while ∆ > 0 and

∥∥g(i,m)

∥∥
c
> 0 do

5 i← i+ 1

6 δi ← min{∆, 2/
∥∥Q∥∥ , ε/(t ∥∥Q∥∥2 ∥∥g(i−1,m)

∥∥
c
)}

7 if mδi > ∆ then
8 ki ← d∆/δie
9 δi ← ∆/ki

10 else ki ← m
11 g(i,0) ← g(i−1,m),∆← ∆− kiδi
12 for j = 0, . . . , ki − 1 do
13 g(i,j+1) ← g(i,j) + δiQg(i,j)

14 (n, k)← (i, ki)

15 return g(n,k)

From the properties of lower transition operators, it follows that for all i ∈ {2, . . . , n− 1},∥∥g(i−1,m)

∥∥
c
≤
∥∥g(i−2,m)

∥∥
c
. Hence, the re-evaluated step size δi is indeed larger than (or equal to)

the previous step size δi−1. The only exception to this is the final step size δn: it might be that the
remaining time ∆ is smaller than mδn, in which case we need to choose k and δn such that kδn = ∆.

Theorem 6 guarantees that the adaptive approximation of Algorithm 2 indeed results in an actual
error lower than the desired maximal error ε. Even more, it provides a method to compute an upper
bound ε′ of the actual error that is lower than the desired maximal error. Finally, it also states that
the adaptive method of Algorithm 2 needs at most an equal number of iterations than the uniform
method of Algorithm 1.

Theorem 6 Let Q be a lower transition rate operator, f ∈ L(X ), t ∈ R≥0, ε ∈ R>0 and m ∈ N.
We use Algorithm 2 to determine n and k, and if applicable also ki, δi and g(i,j). If ‖f‖c = 0,∥∥Q∥∥ = 0 or t = 0, then

∥∥T tf − g(n,k)

∥∥ = 0. Otherwise, we are guaranteed that

‖T tf − Φm,k(δ1 . . . , δn)f‖ =
∥∥T tf − g(n,k)

∥∥ ≤ ε′ := n∑
i=1

δ2
i

∥∥Q∥∥2
ki−1∑
j=0

∥∥g(i,j)

∥∥
c
≤ ε

7
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and that the total number of iterations has an upper bound:
n∑
i=1

ki = (n− 1)m+ k ≤
⌈
max

{∥∥Q∥∥ t/2, t2 ∥∥Q∥∥2 ‖f‖c /ε
}⌉

.

Again, we can determine ε′ while running Algorithm 2. An alternate—less tight—version of ε′ can
be obtained by replacing the sum of

∥∥g(i,j)

∥∥
c

for j from 0 to ki − 1 by ki
∥∥g(i,0)

∥∥
c

= ki
∥∥g(i−1,m)

∥∥
c
.

Determining this alternative ε′ while running Algorithm 2 adds negligible computational overhead
compared to the ε′ of Theorem 6, as

∥∥g(i−1,m)

∥∥
c

is needed to re-evaluate the step size anyway.
The reason why we only re-evaluate the step size δ after every m iterations is twofold. First and

foremost, all we currently know for sure is that for all δ ∈ R≥0 such that δ
∥∥Q∥∥ ≤ 2, all m ∈ N and

all f ∈ L(X ),
∥∥(I + δQ)mf

∥∥
c
≤ ‖f‖c. Re-evaluating the step size every m iterations is therefore

only justified if a priori we are certain that
∥∥(I + δiQ)mg(i−1,m)

∥∥
c
<
∥∥g(i−1,m)

∥∥
c
. We come back

to this in Section 5. A second reason is that there might be a trade-off between the time it takes
to re-evaluate the step size and the time that is gained by the resulting reduction of the number of
iterations. The following numerical example illustrates this trade off.

Example 4 Recall that in Example 3 we wanted to approximate T 1I1 up to a maximal desired error
ε = 1× 10−3. Instead of using the uniform method of Algorithm 1, we now use the adaptive method
of Algorithm 2 with m = 1. The initial step size is the same as that of the uniform method, but
because we re-evaluate the step size we only need 3,437 iterations, as reported in Table 1. We also
find that in this case ε′ = 1.00× 10−3, which is a coincidence. Nevertheless, the actual error of the
approximation is 0.108× 10−3, which is about ten times smaller than what we were aiming for.

However, fewer iterations do not necessarily imply a shorter duration of the computations.
Qualitatively, we can conclude the following from Table 1. First, keeping track of ε′ increases the
duration, as expected. Second, the adaptive method is faster than the uniform method, at least if we
choose m large enough. And third, both methods yield an actual error that is at least an order of
magnitude lower than the desired maximal error.

5. Ergodicity

Let Φm,k(δ1, . . . , δn)f be an approximation constructed using the adaptive method of Algorithm 2.
Re-evaluating the step size is then only justified if a priori we are sure that

1/2
∥∥(I + δiQ)mΦi−1f

∥∥
v

=
∥∥g(i,m)

∥∥
c
<
∥∥g(i−1,m)

∥∥
c

= 1/2 ‖Φi−1f‖v for all i ∈ {1, . . . , n− 1},

where Φ0 := I and Φi := (I + δiQ)mΦi−1. As (Φi−1f) ∈ L(X ), this is definitely true if we require
that

(∀δ ∈ {δ1, . . . , δn−1})(∀f ∈ L(X ))
∥∥(I + δQ)mf

∥∥
v
< ‖f‖v . (3)

In fact, since this inequality is invariant under translation or positive scaling of f , it suffices if

(∀δ ∈ {δ1, . . . , δn−1})(∀f ∈ L(X ) : 0 ≤ f ≤ 1)
∥∥(I + δQ)mf

∥∥
v
< 1.

Readers that are familiar with (the ergodicity of) imprecise discrete-time Markov chains—see
(Hermans and de Cooman, 2012) or (Škulj and Hable, 2013)—will probably recognise this condition,
as it states that the (weak) coefficient of ergodicity of (I + δQ)m should be strictly smaller than
1. For all lower transition operators T , Škulj and Hable (2013) define this (weak) coefficient of
ergodicity as

ρ(T ) := max {‖Tf‖v : f ∈ L(X ), 0 ≤ f ≤ 1} . (4)

8
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5.1 Ergodicity of Lower Transition Rate Operators

As will become apparent, whether or not combinations of m ∈ N and δ ∈ R≥0 exist such that
δ
∥∥Q∥∥ ≤ 2 and ρ((I + δQ)m) < 1 is tightly connected with the behaviour of T tf for large t.

De Bock (2017) proved that for all lower transition rate operator Q and all f ∈ L(X ), the limit
limt→∞ T tf exists. An important case is when this limit is a constant function for all f .

Definition 7 (Definition 2 of (De Bock, 2017)) The lower transition rate operator Q is ergodic if
for all f ∈ L(X ), limt→∞ T tf exists and is a constant function.

As shown by De Bock (2017), ergodicity is easily verified in practice: it is completely determined
by the signs of [QIx](y) and [QIA](z), for all x, y ∈ X and certain combinations of z ∈ X and
A ⊂ X . It turns out that an ergodic lower transition rate operator Q does not only induce a
lower transition operator T t that converges, it also induces discrete approximations—of the form
(I + δkQ) · · · (I + δ1Q)—with special properties. The following theorem, which we consider to be
one of the main results of this contribution, highlights this.

Theorem 8 The lower transition rate operator Q is ergodic if and only if there is some n < |X |
such that ρ(Φ(δ1, . . . , δk)) < 1 for one (and then all) k ≥ n and one (and then all) sequence(s)
δ1, . . . , δk in R>0 such that δi

∥∥Q∥∥ < 2 for all i ∈ {1, . . . , k}.

5.2 Ergodicity and the Uniform Approximation Method

Theorem 8 guarantees that the conditions that were discussed at the beginning of this section are
satisfied. In particular, if the lower transition rate operator is ergodic, then there is some n < |X | such
that ρ((I + δQ)m) < 1 for all m ≥ n and all δ ∈ R>0 such that δ

∥∥Q∥∥ < 2. Consequently, if we
choosem ≥ |X |−1 then re-evaluating the step size δ will—except maybe for the last re-evaluation—
result in a new step size that is strictly greater than the previous one. Therefore, we conclude that
if the lower transition rate operator is ergodic, then using the adaptive method of Algorithm 2 is
certainly justified; it will result in fewer iterations, provided we choose a large enough m.

Another nice consequence of the ergodicity of a lower transition rate operator Q is that we can
prove an alternate a priori guaranteed upper bound for the error of uniform approximations.

Proposition 9 Let Q be a lower transition rate operator and fix some f ∈ L(X ), m,n ∈ N and
δ ∈ R>0 such that δ

∥∥Q∥∥ < 2. If β := ρ((I + δQ)m) < 1, then

‖T tf −Ψt(n)‖ ≤ εe := mδ2
∥∥Q∥∥2 ‖f‖c

1− βk

1− β
≤ εd :=

mδ2
∥∥Q∥∥2 ‖f‖c
1− β

,

where t := nδ and k := dn/me. The same is true for β = ρ(Tmδ).

Interestingly enough, the upper bound εd is not dependent on t (or n) at all! This is a significant
improvement on the upper bound of Theorem 5, as that upper bound is proportional to t2.

By Theorem 8, there always is an m < |X | such that ρ((I + δQ)m) < 1 for all δ ∈ R>0

such that δ
∥∥Q∥∥ < 2. Thus, given such an m, we can easily improve Algorithm 1. After we have

determined n and δ with Algorithm 1, we can simply determine the upper bound of Proposition 9.
If m(1 − βk) < n(1 − β) (or m < n(1 − β)), then this upper bound is smaller than the desired
maximal error ε, and we have found a tighter upper bound on the actual error. We can even go the
extra mile and replace line 4 with a method that looks for the smallest possible n ∈ N that yields

9
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mδ2
∥∥Q∥∥2 ‖f‖c (1− βk) ≤ (1− β)ε,

where k = dn/me and δ = t/n—and therefore also β—are dependent of n. This method could yield a
smaller n, but the time we gain by having to execute fewer iterations does not necessarily compensate
the time lost by looking for a smaller n. In any case, to actually implement these improvements we
need to be able to compute β := ρ((I + δQ)m).

Example 5 For the simple case of Example 1, we can derive an analytical expression for ρ((I+δQ))

that is valid for all δ ∈ R≥0 such that δ
∥∥Q∥∥ ≤ 2. Therefore, we can use Proposition 9 to a priori

determine an upper bound for the error. If we choose m = 1, then εe = 0.767× 10−3 and
εd = 1.79× 10−3. Note that εe < ε, so we can probably decrease the number of iterations n. As
reported in Table 1, we find that n = 6,133 still suffices, and that this results in an approximation
correct up to ε′ = 0.560× 10−3, roughly two times smaller than the desired maximal error ε. The
actual error is 0.0437× 10−3, roughly ten times smaller than ε.

5.3 Approximating the Coefficient of Ergodicity

Unfortunately, determining the exact value of ρ((I+δQ)m)—and of ρ(T ) in general—turns out to be
non-trivial and is often even impossible. Nevertheless, the following theorem gives some—actually
computable—lower and upper bounds for the coefficient of ergodicity.

Theorem 10 Let T be a lower transition operator. Then

ρ(T ) ≤ max
{

max{[T IA](x)− [T IA](y) : x, y ∈ X} : ∅ 6= A ⊂ X
}
, (5)

ρ(T ) ≥ max
{

max{[T IA](x)− [T IA](y) : x, y ∈ X} : ∅ 6= A ⊂ X
}
. (6)

The upper bound in Theorem 10 is particularly useful in combination with Proposition 9, as it allows
us to replace β := ρ((I + δQ)m) with a guaranteed upper bound. Of course, this only makes sense if
this upper bound is strictly smaller than one. The following proposition guarantees that, for ergodic
lower transition rate operators Q, this is always the case.

Proposition 11 Let Q be an ergodic lower transition rate operator. Then there is some n < |X |
such that, for all k ≥ n and δ1, . . . , δk in R>0 such that δi

∥∥Q∥∥ < 2 for all i ∈ {1, . . . , k}, the upper
bound for ρ(Φ(δ1, . . . , δk)) that is given by Eqn. (5) is strictly smaller than one.

5.4 Approximating Limit Values

The results that we have obtained earlier in this section naturally lead to a method to approximate
T∞f := limt→∞ T tf up to some maximal error. This is an important problem in applications; for
instance, Troffaes et al. (2015) try to determine T∞f for an ergodic lower transition rate operator
that arises in their specific reliability analysis application. The method they use is rather ad hoc:
they pick some t and n and then determine the uniform approximation Ψt(n)f . As ‖Ψt(n)f‖v is
small, they suspect that they are close to the actual limit value. They also observe that Ψ2t(4n)f only
differs from Ψt(n)f after the fourth significant digit, which they regard as further empirical evidence
for the correctness of their approximation. While this ad hoc method seemingly works, the initial
values for t and n have to be chosen somewhat arbitrarily. Also, this method provides no guarantee
that the actual error is lower than some desired maximal error.

Theorem 8, Proposition 9, Theorem 10 and the following stopping criterion allow us to propose
a method that corrects these two shortcomings.
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Proposition 12 Let Q be an ergodic lower transition rate operator and let f ∈ L(X ), t ∈ R≥0

and ε ∈ R>0. Let s denote a sequence δ1, . . . , δk in R≥0 such that
∑k

i=1 δi = t and, for all
i ∈ {1, . . . , k}, δi

∥∥Q∥∥ ≤ 2. If ‖T tf − Φ(s)f‖ ≤ ε/2 and ‖Φ(s)f‖c ≤ ε/2, then for all ∆ ∈ R≥0:∣∣∣∣T t+∆f −
max Φ(s) + min Φ(s)

2

∣∣∣∣ ≤ ε and
∣∣∣∣T∞f − max Φ(s) + min Φ(s)

2

∣∣∣∣ ≤ ε.
Without actually stating it, we mention that a similar—though less useful—stopping criterion can be
proved for non-ergodic transition rate matrices as well.

Our method for determining T∞f is now relatively straightforward. Let Q be an ergodic
lower transition rate operator and fix some f ∈ L(X ). We can then approximate T∞f up to any
desired maximal error ε ∈ R>0 as follows. First, we look for some m ∈ N and some—preferably
large—δ ∈ R>0 such that δ

∥∥Q∥∥ < 2 and

2mδ2
∥∥Q∥∥2 ‖f‖c ≤ (1− β)ε,

where β := ρ((I + δQ)m). From Theorem 8, we know that a possible starting point for m is |X |− 1.
If we do not have an analytical expression for ρ((I + δQ)m), then we know from Proposition 11 that
we can instead use the guaranteed upper bound of Theorem 10. If no suchm and δ exist—for instance
because the guaranteed upper bound on β is too conservative—then this method does not work. If on
the other hand we do find such an m and δ, then we can keep on running the iterative step (line 7) of
Algorithm 1 until we reach the first index i ∈ N such that ‖gi‖c ≤ ε/2. By Propositions 9 and 12, we
are now guaranteed that (max gi + min gi)/2 is an approximation of T∞f up to a maximal error ε.

Alternatively, we can fix a step size δ ourselves and use the method of Theorem 5 to compute ε′.
In that case, we simply need to run the iterative scheme until we reach the first index i such that
‖gi‖c ≤ ε′. By Proposition 12, we are then guaranteed that the error (max gi + min gi)/2 is an
approximation of T∞f up to a maximal error ε = 2ε′. The same is true if we replace ε′ by the error
εe that is used in Proposition 9.

Example 6 Using the analytical expressions of Example 2, we obtain T∞I1 ≈ 9.5238095× 10−3.
We want to approximate T∞I1 up to a maximum error ε := 1× 10−6. We observe that m = 1

and δ ≈ 3.485× 10−8 yield an εd that is lower than ε/2. After 196,293,685 iterations, the norm of the
approximation is sufficiently small, resulting in the approximation T∞I1 = (9.524± 0.001)× 10−3.
Alternatively, choosing δ = 1× 10−7 and continuing until ‖gi‖c ≤ ε′ yields the approximation
T∞I1 = (9.5242± 0.0008)× 10−3 after only 69,572,154 iterations.

Mimicking Troffaes et al. (2015), we also tried the heuristic method of increasing t and n until we
observe empirical convergence. After some trying, we find that t = 7 and n = 7 ·250 = 1750 already
yield an approximation with sufficiently small error: ‖T∞I1 −Ψ7(1750)I1‖ ≈ 7× 10−7 < ε. Note
however that for non-binary examples, where T∞f cannot be computed analytically, this heuristic
approach is unable to provide a guaranteed bound.

6. Conclusion

We have improved an existing method and proposed a novel method to approximate T tf up to any
desired maximal error, where T tf is the solution of the non-linear differential equation (1) that plays
an essential role in the theory of imprecise continuous-time Markov chains. As guaranteed by our
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theoretical results, and as verified by our numerical examples, our methods outperform the existing
method by Krak et al. (2016), especially if the lower transition rate operator is ergodic. For these
ergodic lower transition rate operators, we also proposed a method to approximate limt→∞ T tf up
to any desired maximal error.

For the simple case of a binary state space, we observed in numerical examples that there is a
rather large difference between the theoretically required number of iterations and the number of
iterations that are empirically found to be sufficient. Similar differences can—although this falls
beyond the scope of our present contribution—also be observed for the lower transition rate operator
that is studied in (Troffaes et al., 2015). The underlying reason for these observed differences remains
unclear so far. On the one hand, it could be that our methods are still on the conservative side, and
that further improvements are possible. On the other hand, it might be that these differences are
unavoidable, in the sense that guaranteed theoretical bounds come at the price of conservatism. We
leave this as an interesting line of future research. Additionally, the performance of our proposed
methods for systems with a larger state space deserves further inquiry.
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