80,027 research outputs found

    Theoretical mean colors for RR Lyrae variables

    Get PDF
    A hydrodynamically pulsating 0.6 solar mass model of a typical RR Lyrae variable was studied with a radiation transport-hydrodynamic computer program to predict theoretical T sub 3 and colors at many phases and to find the proper methods for getting mean colors and the consequent mean effective temperatures. The variable Eddington radiation approximation method was used with gray and with multifrequency absorption coefficients to represent the radiation flow in the outer optically thin layers. Comparison between observed and computed B-V colors indicate that these low Z population 2 models are reasonably accurate using King 1A composition opacities. The well known Oke, Giver, and Searle relation between B-V and T sub e reproduced. Mean colors were found by four different averaging methods. The method that gives a mean color and the mean T sub e closest to the nonpulsating model was the separate intensity means of B and V

    The development of a pseudo-nyquist analysis technique for hybrid sampled-data control systems

    Get PDF
    The stability characteristics of a launch vehicle, as a function of gain and phase variations at the thrust vector controller, cannot be obtained using classical sampled-data control theory if the launch vehicle attitude control system contains both sampled-data and continuous feedback control loops. A method was developed which can be used to generate a sampled-data pseudo-Nyquist plot for gain and phase variations at the controller. This method was developed and used to determine the stability characteristics of the Saturn 1B launch vehicle in the backup guidance mode

    Fundamental cosmic strings

    Full text link
    Cosmic strings are linear concentrations of energy that may be formed at phase transitions in the very early universe. At one time they were thought to provide a possible origin for the density inhomogeneities from which galaxies eventually develop, though this idea has been ruled out, primarily by observations of the cosmic microwave background (CMB). Fundamental strings are the supposed building blocks of all matter in superstring theory or its modern version, M-theory. These two concepts were originally very far apart, but recent developments have brought them closer. The `brane-world' scenario in particular suggests the existence of macroscopic fundamental strings that could well play a role very similar to that of cosmic strings. In this paper, we outline these new developments, and also analyze recent observational evidence, and prospects for the future.Comment: Review to appear in Contemporary Physic

    Prolongation of Friction Dominated Evolution for Superconducting Cosmic Strings

    Get PDF
    This investigation is concerned with cosmological scenarios based on particle physics theories that give rise to superconducting cosmic strings (whose subsequent evolution may produce stable loop configurations known as vortons). Cases in which electromagnetic coupling of the string current is absent or unimportant have been dealt with in previous work. The purpose of the present work is to provide quantitative estimates for cases in which electromagnetic interaction with the surrounding plasma significantly affects the string dynamics. In particular it will be shown that the current can become sufficiently strong for the initial period of friction dominated string motion to be substantially prolonged, which would entail a reinforcement of the short length scale end of the spectrum of the string distribution, with potentially observable cosmological implications if the friction dominated scenario lasts until the time of plasma recombination.Comment: 10 pages Late

    Pollution reduction technology program for small jet aircraft engines: Class T1

    Get PDF
    Small jet aircraft engines (EPA class T1, turbojet and turbofan engines of less than 35.6 kN thrust) were evaluated with the objective of attaining emissions reduction consistent with performance constraints. Configurations employing the technological advances were screened and developed through full scale rig testing. The most promising approaches in full-scale engine testing were evaluated

    Light curves for bump Cepheids computed with a dynamically zoned pulsation code

    Get PDF
    The dynamically zoned pulsation code developed by Castor, Davis, and Davison was used to recalculate the Goddard model and to calculate three other Cepheid models with the same period (9.8 days). This family of models shows how the bumps and other features of the light and velocity curves change as the mass is varied at constant period. The use of a code that is capable of producing reliable light curves demonstrates that the light and velocity curves for 9.8 day Cepheid models with standard homogeneous compositions do not show bumps like those that are observed unless the mass is significantly lower than the 'evolutionary mass.' The light and velocity curves for the Goddard model presented here are similar to those computed independently by Fischel, Sparks, and Karp. They should be useful as standards for future investigators

    Characterization of particles in the Langley 0.3 meter transonic cryogenic tunnel using hot wire anemometry

    Get PDF
    Hot wire anemometry was used to identify the nature of particles reportedly observed during free stream velocity measurements in the Langley 0.3-meter transonic cryogenic tunnel using a Laser Doppler Velocimeter. Since the heat-transfer process from the hot wire depends on the thermal conductivity and sticking capability of the particles, it was anticipated that the hot wire anemometer response would be affected differently upon impaction by liquid droplets and solid aerosols in the test gas stream. Based on the measured time response of the hot-wire anemometer in the cryogenic tunnel operated in the 0.3-0.8 Mach number range, it is concluded that the particles impacting the hot wire are liquid in nature rather than solid aerosols. It is further surmised that the liquid aerosols are unevaporated liquid nitrogen droplets used for cooling the tunnel test gas
    corecore