25,575 research outputs found

    The Ground State of the Pseudogap in Cuprate Superconductors

    Full text link
    We present studies of the electronic structure of La2-xBaxCuO4, a system where the superconductivity is strongly suppressed as static spin and charge orders or "stripes" develop near the doping level of x=1/8. Using angle-resolved photoemission and scanning tunneling microscopy, we detect an energy gap at the Fermi surface with magnitude consistent with d-wave symmetry and with linear density of states, vanishing only at four nodal points, even when superconductivity disappears at x=1/8. Thus, the non-superconducting, "striped" state at x=1/8 is consistent with a phase incoherent d-wave superconductor whose Cooper pairs form spin/charge ordered structures instead of becoming superconducting.Comment: This is the author's version of the wor

    The Dual Formulation of Cosmic Strings and Vortices

    Full text link
    We study four dimensional systems of global, axionic and local strings. By using the path integral formalism, we derive the dual formulation of these systems, where Goldstone bosons, axions and missive vector bosons are described by antisymmetric tensor fields, and strings appear as a source for these tensor fields. We show also how magnetic monopoles attached to local strings are described in the dual formulation. We conclude with some remarks.Comment: 18 pages, CU-TP-588 and CERN-TH.6780/9

    Electronic structure of the cuprate superconducting and pseudogap phases from spectroscopic imaging STM

    Get PDF
    We survey the use of spectroscopic imaging scanning tunneling microscopy (SI-STM) to probe the electronic structure of underdoped cuprates. Two distinct classes of electronic states are observed in both the d-wave superconducting (dSC) and the pseudogap (PG) phases. The first class consists of the dispersive Bogoliubov quasiparticle excitations of a homogeneous d-wave superconductor, existing below a lower energy scale E = Delta(0). We find that the Bogoliubov quasiparticle interference (QPI) signatures of delocalized Cooper pairing are restricted to a k-space arc, which terminates near the lines connecting k = +/-(pi/a(0), 0) to k = +/-(0, pi/a(0)). This arc shrinks continuously with decreasing hole density such that Luttinger's theorem could be satisfied if it represents the front side of a hole-pocket that is bounded behind by the lines between k = +/-(pi/a(0), 0) and k = +/-(0, pi/a(0)). In both phases, the only broken symmetries detected for the vertical bar E vertical bar < Delta(0) states are those of a d-wave superconductor. The second class of states occurs proximate to the PG energy scale E = Delta(1). Here the non-dispersive electronic structure breaks the expected 90 degrees-rotational symmetry of electronic structure within each unit cell, at least down to 180 degrees-rotational symmetry. This electronic symmetry breaking was first detected as an electronic inequivalence at the two oxygen sites within each unit cell by using a measure of nematic (C-2) symmetry. Incommensurate non-dispersive conductance modulations, locally breaking both rotational and translational symmetries, coexist with this intra-unit-cell electronic symmetry breaking at E = Delta(1). Their characteristic wavevector Q is determined by the k-space points where Bogoliubov QPI terminates and therefore changes continuously with doping. The distinct broken electronic symmetry states (intra-unit-cell and finite Q) coexisting at E similar to Delta(1) are found to be indistinguishable in the dSC and PG phases. The next challenge for SI-STM studies is to determine the relationship of the E similar to Delta(1) broken symmetry electronic states with the PG phase, and with the E < Delta(0) states associated with Cooper pairing.Publisher PDFPeer reviewe

    Electrical resistivity of composite superconductors

    Get PDF
    In addition to its superconducting properties, a superconductor is usually characterized by poor thermal conductivity and relatively high electrical resistivity in the normal state. To remedy this situation a study of superconducting properties of Cu-rich CU-Nb wires prepared by directionally solidified and cold-rolled technique was conducted. Some of the specimens were prepared by melting, directional solidification and diffusing in Tin. A total of 12 wire specimens was tested. Each specimen was analyzed by plotting experimental data into the following curves: the graph of the residual resistivity as a function of the specimen current at 4.3 K; and the graph of the electrical resistivity as a function of the temperature at a constant current

    An Innovative Approach for Community Engagement: Using an Audience Response System

    Full text link
    Community-based participatory research methods allow for community engagement in the effort to reduce cancer health disparities. Community engagement involves health professionals becoming a part of the community in order to build trust, learn from the community and empower them to reduce disparities through their own initiatives and ideas. Audience Response Systems (ARS) are an innovative and engaging way to involve the community and obtain data for research purposes using keypads to report results via power point. The use of ARS within communities is very limited and serves to widen the disparity gap by not delivering new advances in medical knowledge and technology among all population groups. ARS was implemented at a community town hall event sponsored by a National Institute on Minority Health and Health Disparities Exploratory Center of Excellence, the Center for Equal Health. Participants appreciated being able to see how everyone else answered and felt included in the research process. ARS is beneficial because the community can answer truthfully and provides instant research results. Additionally, researchers can collect large amounts of data quickly, in a non-threatening way while tracking individual responses anonymously. Audience Response Systems proved to be an effective tool for successfully accomplishing community-based participatory research

    Vortex Dynamics in Self-Dual Chern-Simons Higgs Systems

    Full text link
    We consider vortex dynamics in self-dual Chern-Simons Higgs systems. We show that the naive Aharanov-Bohm phase is the inverse of the statistical phase expected from the vortex spin, and that the self-dual configurations of vortices are degenerate in energy but not in angular momentum. We also use the path integral formalism to derive the dual formulation of Chern-Simons Higgs systems in which vortices appear as charged particles. We argue that besides the electromagnetic interaction, there is an additional interaction between vortices, the so-called Magnus force, and that these forces can be put together into a single `dual electromagnetic' interaction. This dual electromagnetic interaction leads to the right Aharanov-Bohm phase. We also derive and study the effective action for slowly moving vortices, which contains terms both linear and quadratic in the vortex velocity.Comment: 36 pages and three figures (available under request), Columbia and CERN preprin

    Bayesian Non-Exhaustive Classification A Case Study: Online Name Disambiguation using Temporal Record Streams

    Get PDF
    The name entity disambiguation task aims to partition the records of multiple real-life persons so that each partition contains records pertaining to a unique person. Most of the existing solutions for this task operate in a batch mode, where all records to be disambiguated are initially available to the algorithm. However, more realistic settings require that the name disambiguation task be performed in an online fashion, in addition to, being able to identify records of new ambiguous entities having no preexisting records. In this work, we propose a Bayesian non-exhaustive classification framework for solving online name disambiguation task. Our proposed method uses a Dirichlet process prior with a Normal * Normal * Inverse Wishart data model which enables identification of new ambiguous entities who have no records in the training data. For online classification, we use one sweep Gibbs sampler which is very efficient and effective. As a case study we consider bibliographic data in a temporal stream format and disambiguate authors by partitioning their papers into homogeneous groups. Our experimental results demonstrate that the proposed method is better than existing methods for performing online name disambiguation task.Comment: to appear in CIKM 201
    corecore