42,669 research outputs found
FliPer: Checking the reliability of global seismic parameters from automatic pipelines
Our understanding of stars through asteroseismic data analysis is limited by
our ability to take advantage of the huge amount of observed stars provided by
space missions such as CoRoT, Kepler, K2, and soon TESS and PLATO. Global
seismic pipelines provide global stellar parameters such as mass and radius
using the mean seismic parameters, as well as the effective temperature. These
pipelines are commonly used automatically on thousands of stars observed by K2
for 3 months (and soon TESS for at least around 1 month). However, pipelines
are not immune from misidentifying noise peaks and stellar oscillations.
Therefore, new validation techniques are required to assess the quality of
these results. We present a new metric called FliPer (Flicker in Power), which
takes into account the average variability at all measured time scales. The
proper calibration of FliPer enables us to obtain good estimations of global
stellar parameters such as surface gravity that are robust against the
influence of noise peaks and hence are an excellent way to find faults in
asteroseismic pipelines.Comment: 4 pages, 3 figures, Proceedings for SF2A 2017 (Paris
Environment Induced Entanglement in Markovian Dissipative Dynamics
We show that two, non interacting 2-level systems, immersed in a common bath,
can become mutually entangled when evolving according to a Markovian,
completely positive reduced dynamics.Comment: 4 pages, LaTex, no figures, added reference
The Propeller Regime of Disk Accretion to a Rapidly Rotating Magnetized Star
The propeller regime of disk accretion to a rapidly rotating magnetized star
is investigated here for the first time by axisymmetric 2.5D
magnetohydrodynamic simulations. An expanded, closed magnetosphere forms in
which the magnetic field is predominantly toroidal. A smaller fraction of the
star's poloidal magnetic flux inflates vertically, forming a magnetically
dominated tower. Matter accumulates in the equatorial region outside
magnetosphere and accretes to the star quasi-periodically through elongated
funnel streams which cause the magnetic field to reconnect. The star spins-down
owing to the interaction of the closed magnetosphere with the disk. For the
considered conditions, the spin-down torque varies with the angular velocity of
the star omega* as omega*^1.3 for fixed mass accretion rate. The propeller
stage may be important in the evolution of X-ray pulsars, cataclysmic variables
and young stars. In particular, it may explain the present slow rotation of the
classical T Tauri stars.Comment: 5 pages with 4 figures, LaTeX, macros: emulapj.sty, avi movies are
available at http://www.astro.cornell.edu/us-russia/disk_prop.ht
Feasibility and concept study to convert the NASA/AMES vertical motion simulator to a helicopter simulator
The conceptual design for converting the vertical motion simulator (VMS) to a multi-purpose aircraft and helicopter simulator is presented. A unique, high performance four degrees of freedom (DOF) motion system was developed to permanently replace the present six DOF synergistic system. The new four DOF system has the following outstanding features: (1) will integrate with the two large VMS translational modes and their associated subsystems; (2) can be converted from helicopter to fixed-wing aircraft simulation through software changes only; (3) interfaces with an advanced cab/visual display system of large dimensions; (4) makes maximum use of proven techniques, convenient materials and off-the-shelf components; (5) will operate within the existing building envelope without modifications; (6) can be built within the specified weight limit and avoid compromising VMS performance; (7) provides maximum performance with a minimum of power consumption; (8) simple design minimizes coupling between motions and maximizes reliability; and (9) can be built within existing budgetary figures
Image processing applied to gravity and topography data covering the continental United States
The applicability of fairly standard image processing techniques to processing and analyzing large geologic data sets in addressed. Image filtering techniques were used to interpolate between gravity station locations to produce a regularly spaced data array that preserves detail in areas with good coverage, and that produces a continuous tone image rather than a contour map. Standard image processing techniques were used to digitally register and overlay topographic and gravity data, and the data were displayed in ways that emphasize subtle but pervasive structural features. The potential of the methods is illustrated through a discussion of linear structures that appear in the processed data between the midcontinent gravity high and the Appalachians
The Uniqueness Problem of Sequence Product on Operator Effect Algebra
A quantum effect is an operator on a complex Hilbert space that satisfies
. We denote the set of all quantum effects by . In
this paper we prove, Theorem 4.3, on the theory of sequential product on which shows, in fact, that there are sequential products on which are not of the generalized L\"{u}ders form. This result answers a
Gudder's open problem negatively
Interplay between Zeeman interaction and spin-orbit coupling in a two-dimensional semiconductor system
We analyse the interplay between Dresselhaus, Bychkov-Rashba, and Zeeman
interactions in a two-dimensional semiconductor quantum system under the action
of a magnetic field. When a vertical magnetic field is considered, we predict
that the interplay results in an effective cyclotron frequency that depends on
a spin-dependent contribution. For in-plane magnetic fields, we found that the
interplay induces an anisotropic effective gyromagnetic factor that depends on
the orientation of the applied field as well as on the orientation of the
electron momentum.Comment: 5 page
High-Precision c and b Masses, and QCD Coupling from Current-Current Correlators in Lattice and Continuum QCD
We extend our earlier lattice-QCD analysis of heavy-quark correlators to
smaller lattice spacings and larger masses to obtain new values for the c mass
and QCD coupling, and, for the first time, values for the b mass:
m_c(3GeV,n_f=4)=0.986(6)GeV, alpha_msb(M_Z,n_f=5)=0.1183(7), and
m_b(10GeV,n_f=5)=3.617(25)GeV. These are among the most accurate determinations
by any method. We check our results using a nonperturbative determination of
the mass ratio m_b(mu,n_f)/m_c(mu,n_f); the two methods agree to within our 1%
errors and taken together imply m_b/m_c=4.51(4). We also update our previous
analysis of alpha_msb from Wilson loops to account for revised values for r_1
and r_1/a, finding a new value alpha_\msb(M_Z,n_f=5)=0.1184(6); and we update
our recent values for light-quark masses from the ratio m_c/m_s. Finally, in
the Appendix, we derive a procedure for simplifying and accelerating
complicated least-squares fits.Comment: 16 pages, 10 figures, 3 table
On the Quantum Jarzynski Identity
In this note, we will discuss how to compactly express and prove the
Jarzynski identity for an open quantum system with dissipative dynamics. We
will avoid explicitly measuring the work directly, which is tantamount to
continuously monitoring the system, and instead measure the heat flow from the
environment. We represent the measurement of heat flow with Hermitian map
superoperators that act on the system density matrix. Hermitian maps provide a
convenient and compact representation of sequential measurement and correlation
functions.Comment: 4 page
Shot Noise Enhancement in Resonant Tunneling Structures in a Magnetic Field
We have observed that the shot noise of tunnel current, I, in
GaSb-AlSb-InAs-AlSb-GaSb double-barrier structure under a magnetic field can
exceed 2qI. The measurements were done at T=4K in fields up to 5T parallel to
the current. The noise enhancement occurred at each of the several
negative-differential conductance regions induced by the tunneling of holes
through Landau levels in the InAs quantum well. The amount of the enhancement
increased with the strength of the negative conductance and reached values up
to 8qI. These results are explained qualitatively by fluctuations of the
density of states in the well, but point out the need for a detailed theory of
shot noise enhancement in resonant tunneling devices.Comment: 4 pages, RevTex, 3 figure
- …