50,039 research outputs found
Autonomous Locomotion Mode Transition Simulation of a Track-legged Quadruped Robot Step Negotiation
Multi-modal locomotion (e.g. terrestrial, aerial, and aquatic) is gaining
increasing interest in robotics research as it improves the robots
environmental adaptability, locomotion versatility, and operational
flexibility. Within the terrestrial multiple locomotion robots, the advantage
of hybrid robots stems from their multiple (two or more) locomotion modes,
among which robots can select from depending on the encountering terrain
conditions. However, there are many challenges in improving the autonomy of the
locomotion mode transition between their multiple locomotion modes. This work
proposed a method to realize an autonomous locomotion mode transition of a
track-legged quadruped robot steps negotiation. The autonomy of the
decision-making process was realized by the proposed criterion to comparing
energy performances of the rolling and walking locomotion modes. Two climbing
gaits were proposed to achieve smooth steps negotiation behaviours for energy
evaluation purposes. Simulations showed autonomous locomotion mode transitions
were realized for negotiations of steps with different height. The proposed
method is generic enough to be utilized to other hybrid robots after some
pre-studies of their locomotion energy performances
How typical is the Coma cluster?
Coma is frequently used as the archetype z~0 galaxy cluster to compare higher
redshift work against. It is not clear, however, how representative the Coma
cluster is for galaxy clusters of its mass or X-ray luminosity, and
significantly: recent works have suggested that the galaxy population of Coma
may be in some ways anomolous. In this work, we present a comparison of Coma to
an X-ray selected control sample of clusters. We show that although Coma is
typical against the control sample in terms of its internal kinematics
(substructure and velocity dispersion profile), it has a significantly high
(~3sigma) X-ray temperature set against clusters of comparable mass. By
de-redshifting our control sample cluster galaxies star-formation rates using a
fit to the galaxy main sequence evolution at z < 0.1, we determine that the
typical star-formation rate of Coma galaxies as a function of mass is higher
than for galaxies in our control sample at a confidence level of > 99 per cent.
One way to alleviate this discrepency and bring Coma in-line with the control
sample would be to have the distance to Coma to be slightly lower, perhaps
through a non-negligible peculiar velocity with respect to the Hubble
expansion, but we do not regard this as likely given precision measurements
using a variety of approaches. Therefore in summary, we urge caution in using
Coma as a z~0 baseline cluster in galaxy evolution studies.Comment: accepted for publication in MNRA
Conceptual design of an airborne laser Doppler velocimeter system for studying wind fields associated with severe local storms
An airborne laser Doppler velocimeter was evaluated for diagnostics of the wind field associated with an isolated severe thunderstorm. Two scanning configurations were identified, one a long-range (out to 10-20 km) roughly horizontal plane mode intended to allow probing of the velocity field around the storm at the higher altitudes (4-10 km). The other is a shorter range (out to 1-3 km) mode in which a vertical or horizontal plane is scanned for velocity (and possibly turbulence), and is intended for diagnostics of the lower altitude region below the storm and in the out-flow region. It was concluded that aircraft flight velocities are high enough and severe storm lifetimes are long enough that a single airborne Doppler system, operating at a range of less than about 20 km, can view the storm area from two or more different aspects before the storm characteristics change appreciably
Precision Upsilon Spectroscopy from Nonrelativistic Lattice QCD
The spectrum of the Upsilon system is investigated using the Nonrelativistic
Lattice QCD approach to heavy quarks and ignoring light quark vacuum
polarization. We find good agreement with experiment for the Upsilon(1S),
Upsilon(2S), Upsilon(3S) and for the center of mass and fine structure of the
chi_b states. The lattice calculations predict b-bbar D-states with center of
mass at (10.20 +/- 0.07 +/- 0.03)GeV. Fitting procedures aimed at extracting
both ground and excited state energies are developed. We calculate a
nonperturbative dispersion mass for the Upsilon(1S) and compare with
tadpole-improved lattice perturbation theory.Comment: 8 pages, latex, SCRI-94-57, OHSTPY-HEP-T-94-00
Supervised learning of an opto-magnetic neural network with ultrashort laser pulses
The explosive growth of data and its related energy consumption is pushing
the need to develop energy-efficient brain-inspired schemes and materials for
data processing and storage. Here, we demonstrate experimentally that Co/Pt
films can be used as artificial synapses by manipulating their magnetization
state using circularly-polarized ultrashort optical pulses at room temperature.
We also show an efficient implementation of supervised perceptron learning on
an opto-magnetic neural network, built from such magnetic synapses.
Importantly, we demonstrate that the optimization of synaptic weights can be
achieved using a global feedback mechanism, such that the learning does not
rely on external storage or additional optimization schemes. These results
suggest there is high potential for realizing artificial neural networks using
optically-controlled magnetization in technologically relevant materials, that
can learn not only fast but also energy-efficient.Comment: 9 pages, 4 figure
Direct determination of the strange and light quark condensates from full lattice QCD
We determine the strange quark condensate from lattice QCD for the first time and compare its value to that of the light quark and chiral condensates. The results come from a direct calculation of the expectation value of the trace of the quark propagator followed by subtraction of the appropriate perturbative contribution, derived here, to convert the non-normal-ordered mψ̅ ψ to the MS̅ scheme at a fixed scale. This is then a well-defined physical “nonperturbative” condensate that can be used in the operator product expansion of current-current correlators. The perturbative subtraction is calculated through O(αs) and estimates of higher order terms are included through fitting results at multiple lattice spacing values. The gluon field configurations used are “second generation” ensembles from the MILC collaboration that include 2+1+1 flavors of sea quarks implemented with the highly improved staggered quark action and including u/d sea quarks down to physical masses. Our results are ⟨s̅ s⟩MS̅ (2 GeV)=-(290(15) MeV)3, ⟨l̅ l⟩MS̅ (2 GeV)=-(283(2) MeV)3, where l is a light quark with mass equal to the average of the u and d quarks. The strange to light quark condensate ratio is 1.08(16). The light quark condensate is significantly larger than the chiral condensate in line with expectations from chiral analyses. We discuss the implications of these results for other calculations
Precision Charmonium Spectroscopy From Lattice QCD
We present results for Charmonium spectroscopy using Non-Relativistic QCD
(NRQCD). For the NRQCD action the leading order spin-dependent and next to
leading order spin-independent interactions have been included with
tadpole-improved coefficients. We use multi-exponential fits to multiple
correlation functions to extract ground and excited states. Splittings
between the lowest , and states are given and we have accurate
values for the state hyperfine splitting and the fine structure.
Agreement with experiment is good - the remaining systematic errors are
discussed.Comment: 23 pages uuencoded latex file. Contains figures in late
Attempted Tumour Therapy Complicated by a Viroid Associate of the Tumour
ANTI-TUMOUR therapy upon experimental animals has long served as a model for attempts to treat cancer in man. As with few exceptions these agents have marrow depressant qualities there has always been a serious danger that therapeutically effective doses will prove lethal as a consequence of haematopoietic failure. Within the last 10 years some encouragement has come from the demonstration that an injection of viable bone marrow can restore haematopoietic function (Lorenz, Congdon and Uphoff, 1952) when given after a dose of irradiation sufficient to cause haematopoietic failure but insufficient to damage irreparably the intestinal epithelium. It has been shown quite clearly that this restoration is due to repopulation of the depleted haematopoietic sites by the injected marrow (Ford et al., 1956). Barnes et al. (1956) and Barnes and Loutit (1957) were quick to realise the use of the finding to extend the doses of irradiation available as therapy against cancer. Others have adopted a similar approach though using radiomimetic chemicals. Although in both mice (Barnes and Loutit, 1957) and men (Thomas
Heavy meson masses and decay constants from relativistic heavy quarks in full lattice QCD
We determine masses and decay constants of heavy-heavy and heavy-charm
pseudoscalar mesons as a function of heavy quark mass using a fully
relativistic formalism known as Highly Improved Staggered Quarks for the heavy
quark. We are able to cover the region from the charm quark mass to the bottom
quark mass using MILC ensembles with lattice spacing values from 0.15 fm down
to 0.044 fm. We obtain f_{B_c} = 0.427(6) GeV; m_{B_c} = 6.285(10) GeV and
f_{\eta_b} = 0.667(6) GeV. Our value for f_{\eta_b} is within a few percent of
f_{\Upsilon} confirming that spin effects are surprisingly small for heavyonium
decay constants. Our value for f_{B_c} is significantly lower than potential
model values being used to estimate production rates at the LHC. We discuss the
changing physical heavy-quark mass dependence of decay constants from
heavy-heavy through heavy-charm to heavy-strange mesons. A comparison between
the three different systems confirms that the B_c system behaves in some ways
more like a heavy-light system than a heavy-heavy one. Finally we summarise
current results on decay constants of gold-plated mesons.Comment: 16 pages, 12 figure
- …