187 research outputs found

    Association of Air Pollution with Increased Incidence of Ventricular Tachyarrhythmias Recorded by Implanted Cardioverter Defibrillators

    Get PDF
    Epidemiologic studies have demonstrated a consistent link between sudden cardiac deaths and particulate air pollution. We used implanted cardioverter defibrillator (ICD) records of ventricular tachyarrhythmias to assess the role of air pollution as a trigger of these potentially life-threatening events. The study cohort consisted of 203 cardiac patients with ICD devices in the Boston metropolitan area who were followed for an average of 3.1 years between 1995 and 2002. Fine particle mass and gaseous air pollution plus temperature and relative humidity were measured on almost all days, and black carbon, sulfate, and particle number on a subset of days. Date, time, and intracardiac electrograms of ICD-detected arrhythmias were downloaded at the patients’ regular follow-up visits (about every 3 months). Ventricular tachyarrhythmias were identified by electrophysiologist review. Risk of ventricular arrhythmias associated with air pollution was estimated with logistic regression, adjusting for season, temperature, relative humidity, day of the week, patient, and a recent prior arrhythmia. We found increased risks of ventricular arrhythmias associated with 2-day mean exposure for all air pollutants considered, although these associations were not statistically significant. We found statistically significant associations between air pollution and ventricular arrhythmias for episodes within 3 days of a previous arrhythmia. The associations of ventricular tachyarrhythmias with fine particle mass, carbon monoxide, nitrogen dioxide, and black carbon suggest a link with motor vehicle pollutants. The associations with sulfate suggest a link with stationary fossil fuel combustion sources

    Increased Risk of Paroxysmal Atrial Fibrillation Episodes Associated with Acute Increases in Ambient Air Pollution

    Get PDF
    Objectives: We reported previously that 24-hr moving average ambient air pollution concentrations were positively associated with ventricular arrhythmias detected by implantable cardioverter defibrillators (ICDs). ICDs also detect paroxysmal atrial fibrillation episodes (PAF) that result in rapid ventricular rates. In this same cohort of ICD patients, we assessed the association between ambient air pollution and episodes of PAF. Design: We performed a case–crossover study. Participants: Patients who lived in the Boston, Massachusetts, metropolitan area and who had ICDs implanted between June 1995 and December 1999 (n = 203) were followed until July 2002. Evaluations/Measurements: We used conditional logistic regression to explore the association between community air pollution and 91 electrophysiologist-confirmed episodes of PAF among 29 subjects. Results: We found a statistically significant positive association between episodes of PAF and increased ozone concentration (22 ppb) in the hour before the arrhythmia (odds ratio = 2.08; 95% confidence interval = 1.22, 3.54; p = 0.001). The risk estimate for a longer (24-hr) moving average was smaller, thus suggesting an immediate effect. Positive but not statistically significant risks were associated with fine particles, nitrogen dioxide, and black carbon. Conclusions: Increased ambient O(3) pollution was associated with increased risk of episodes of rapid ventricular response due to PAF, thereby suggesting that community air pollution may be a precipitant of these events

    Term birth weight and ambient air pollutant concentrations during pregnancy, among women living in Monroe County, New York

    Get PDF
    Increased ambient air pollutant concentrations during pregnancy have been associated with reduced birth weight, but the etiologically relevant pregnancy time window(s) is/are unclear. In 76,500 singleton births in Monroe County, NY (2005–2016), who were 37–42 gestational weeks at delivery, we used generalized linear models to regress term birth weight against mean gestational month pollutant concentrations, adjusting for mean temperature, and maternal, infant, and medical service use characteristics. Overall, there were no clear patterns of term birth weight change associated with increased concentrations of any pollutant across gestational months. However, among Hispanic women only, increases in all pollutants, except O3, in multiple gestational months, were associated with decreased term birth weight. Each 3.25 µg/m3 increase in PM2.5 concentration in the 6th gestational month was associated with a −20.4 g (95% CI = −34.0, −6.8) reduction in term birth weight among Hispanic women, but a 4.1 g (95% CI = −2.5, 10.8) increase among non-Hispanic mothers (p for interaction < 0.001). Although ambient air pollutant concentrations during pregnancy were not associated with reduced term birth weight among women of all ethnicities living in Monroe County, this observed association in Hispanic mothers may be a result of less exposure misclassification and bias (due to closer residential proximity to the monitoring site)

    Long-term trends in submicron particle concentrations in a metropolitan area of the northeastern United States

    Get PDF
    Significant changes in emission sources have occurred in the northeastern United States over the past decade, due in part to the implementation of emissions standards, the introduction and addition of abatement technologies for road transport, changes in fuel sulfur content for road and non-road transport, as well as economic impacts of a major recession and differential fuel prices. These changes in emission scenarios likely affected the concentrations of airborne submicron particles. This study investigated the characteristics of 11–500 nm particle number concentrations and their size spectra in Rochester, NY during the past 15 years (2002 to 2016). The modal structure, diurnal, weekly and monthly patterns of particle number concentrations are analyzed. Long-term trends are quantified using seasonal-trend decomposition procedures based on “Loess”, Mann-Kendall regression with Theil-Sen slope and piecewise regression. Particle concentrations underwent significant (p < 0.05) downward trends. An annual decrease of −323 particles/cm3/y (−4.6%/y) was estimated for the total particle number concentration using Theil-Sen analysis. The trends were driven mainly by the decrease in particles in the 11–50 nm range (−181 particles/cm3/y; −4.7%/y). Slope changes were investigated annually and seasonally. Piecewise regression found different slopes for different portions of the overall period with the strongest declines between 2005 and 2011/2013, followed by small upward trends between 2013 and 2016 for most size bins, possibly representing increased vehicular traffic after the recovery from the 2008 recession
    corecore