117 research outputs found

    Behavior is movement only but how to interpret it? Problems and pitfalls in translational neuroscience-a 40-year experience

    Full text link
    Translational research in behavioral neuroscience seeks causes and remedies for human mental health problems in animals, following leads imposed by clinical research in psychiatry. This endeavor faces several problems because scientists must read and interpret animal movements to represent human perceptions, mood, and memory processes. Yet, it is still not known how mammalian brains bundle all these processes into a highly compressed motor output in the brain stem and spinal cord, but without that knowledge, translational research remains aimless. Based on some four decades of experience in the field, the article identifies sources of interpretation problems and illustrates typical translational pitfalls. (1) The sensory world of mice is different. Smell, hearing, and tactile whisker sensations dominate in rodents, while visual input is comparatively small. In humans, the relations are reversed. (2) Mouse and human brains are equated inappropriately: the association cortex makes up a large portion of the human neocortex, while it is relatively small in rodents. The predominant associative cortex in rodents is the hippocampus itself, orchestrating chiefly inputs from secondary sensorimotor areas and generating species-typical motor patterns that are not easily reconciled with putative human hippocampal functions. (3) Translational interpretation of studies of memory or emotionality often neglects the ecology of mice, an extremely small species surviving by freezing or flight reactions that do not need much cognitive processing. (4) Further misinterpretations arise from confounding neuronal properties with system properties, and from rigid mechanistic thinking unaware that many experimentally induced changes in the brain do partially reflect unpredictable compensatory plasticity. (5) Based on observing hippocampal lesion effects in mice indoors and outdoors, the article offers a simplistic general model of hippocampal functions in relation to hypothalamic input and output, placing hypothalamus and the supraspinal motor system at the top of a cerebral hierarchy. (6) Many translational problems could be avoided by inclusion of simple species-typical behaviors as end-points comparable to human cognitive or executive processing, and to rely more on artificial intelligence for recognizing patterns not classifiable by traditional psychological concepts

    Role of Environment and Experimenter in Reproducibility of Behavioral Studies With Laboratory Mice

    Full text link
    Behavioral phenotyping of mice has received a great deal of attention during the past three decades. However, there is still a pressing need to understand the variability caused by environmental and biological factors, human interference, and poorly standardized experimental protocols. The inconsistency of results is often attributed to the inter-individual difference between the experimenters and environmental conditions. The present work aims to dissect the combined influence of the experimenter and the environment on the detection of behavioral traits in two inbred strains most commonly used in behavioral genetics due to their contrasting phenotypes, the C57BL/6J and DBA/2J mice. To this purpose, the elevated O-maze, the open field with object, the accelerating rotarod and the Barnes maze tests were performed by two experimenters in two diverse laboratory environments. Our findings confirm the well-characterized behavioral differences between these strains in exploratory behavior, motor performance, learning and memory. Moreover, the results demonstrate how the experimenter and the environment influence the behavioral tests with a variable-dependent effect, often with mutually exclusive contributions. In this context, our study highlights how both the experimenter and the environment can have an impact on the strain effect size without altering the direction of the conclusions. Importantly, the general agreement on the results is reached by converging evidence from multiple measures addressing the same trait. In conclusion, the present work elucidates the contribution of both the experimenter and the laboratory environment in the intricate field of reproducibility in mouse behavioral phenotyping

    Learning and memory with neuropathic pain: impact of old age and progranulin deficiency

    Get PDF
    Persistent neuropathic pain is a frequent consequence of peripheral nerve injuries, particularly in the elderly. Using the IntelliCage we studied if sciatic nerve injury obstructed learning and memory in young and aged mice, each in wild type and progranulin deficient mice, which develop premature signs of brain aging. Both young and aged mice developed long-term nerve injury-evoked hyperalgesia and allodynia. In both genotypes, aged mice with neuropathic pain showed high error rates in place avoidance acquisition tasks. However, once learnt, these aged mice with neuropathic pain showed a significantly stronger maintenance of the aversive memory. Nerve injury did not affect place preference behavior in neither genotype, neither in young nor aged mice. However, nerve injury in progranulin deficient mice impaired the learning of spatial sequences of awarded places, particularly in the aged mice. This task required a discrimination of clockwise and anti-clockwise sequences. The chaining failure occurred only in progranulin deficient mice after nerve injury, but not in sham operated or wildtype mice, suggesting that progranulin was particularly important for compensatory adaptations after nerve injury. In contrast, all aged mice with neuropathic pain, irrespective of the genotype, had a long maintenance of aversive memory suggesting a negative alliance and possibly mutual aggravation of chronic neuropathic pain and aversive memory at old age

    Environmental enrichment improves hippocampus-dependent spatial learning in female C57BL/6 mice in novel IntelliCage sweet reward-based behavioral tests

    Get PDF
    The IntelliCage is an automated home-cage system that allows researchers to investigate the spontaneous behavior and learning abilities of group-housed mice. The IntelliCage enables us to increase the standardization and reproducibility of behavioral outcomes by the omission of experimenter–mouse interactions. Although the IntelliCage provides a less stressful environment for animals, standard IntelliCage protocols use controlled water access as the motivational driver for learning. To overcome possible water restrictions in slow learners, we developed a series of novel protocols based on appetitive learning, in which mice had permanent access to plain water but were additionally rewarded with sweetened water upon solving the task. C57BL/6NCrl female mice were used to assess the efficacy of these sweet reward-based protocols in a series of learning tasks. Compared to control mice tested with standard protocols, mice motivated with a sweet reward did equal to or better in operant performance and place learning tasks. Learning of temporal rules was slower than that in controls. When faced with a combined temporal x spatial working memory task, sweet-rewarded mice learned little and chose plain water. In a second set of experiments, the impact of environmental enrichment on appetitive learning was tested. Mice kept under enriched environment (EE) or standard housing (SH) conditions prior to the IntelliCage experiments performed similarly in the sweet-rewarded place learning task. EE mice performed better in the hippocampus-dependent spatial working memory task. The improved performance of EE mice in the hippocampus-dependent spatial working memory task might be explained by the observed larger volume of their mossy fibers. Our results confirm that environmental enrichment increases complex spatial learning abilities and leads to long-lasting morphological changes in the hippocampus. Furthermore, simple standard IntelliCage protocols could easily be adapted to sweet rewards, which improve animal welfare by removing the possibility of water restriction. However, complex behavioral tasks motivated by sweet reward-based learning need further adjustments to reach the same efficacy as standard protocols

    Bank voles show more impulsivity in IntelliCage learning tasks than wood mice

    Full text link
    Impulsivity is a personality trait of healthy individuals, but in extreme forms common in mental disorders. Previous behavioral testing of wild-caught bank voles and wood mice suggested impulsiveness in bank voles. Here, we compared behavioral performance of bank voles and wood mice in tests for response control in the IntelliCage. In the reaction time task, a test similar to the five-choice serial-reaction time task (5CSRTT), bank voles made more premature responses. Impulsivity in the reaction time task was associated with smaller medial habenular nucleus in bank voles. Additional tests revealed reduced behavioral flexibility in the self-paced flexibility task in bank voles, but equal spatial and reversal learning in the chaining/reversal task in both species. Expression of immediate early gene Arc after behavioral testing was low in medial prefrontal cortex, but high in hypothalamic supraoptic and paraventricular nucleus in bank voles. Wood mice showed the opposite pattern. Numbers of Arc-positive cells in the dorsal hippocampus were higher in bank voles than wood mice. Due to continuous behavioral testing (24/7), associations between behavioral performance and Arc were rare. Corticosterone measurements at the end of experiments suggested that IntelliCage testing did not elicit a stress response in these wild rodents. In summary, habenular size differences and altered activation of brain areas after testing might indicate differently balanced activations of cortico-limbic and cortico-hypothalamic circuits in bank voles compared to wood mice. Behavioral performance of bank voles suggest that these rodents could be a natural animal model for investigating impulsive and perseverative behaviors

    Lack of APLP1 leads to subtle alterations in neuronal morphology but does not affect learning and memory

    Full text link
    The amyloid precursor protein APP plays a crucial role in Alzheimer pathogenesis. Its physiological functions, however, are only beginning to be unraveled. APP belongs to a small gene family, including besides APP the closely related amyloid precursor-like proteins APLP1 and APLP2, that all constitute synaptic adhesion proteins. While APP and APLP2 are ubiquitously expressed, APLP1 is specific for the nervous system. Previous genetic studies, including combined knockouts of several family members, pointed towards a unique role for APLP1, as only APP/APLP1 double knockouts were viable. We now examined brain and neuronal morphology in APLP1 single knockout (KO) animals, that have to date not been studied in detail. Here, we report that APLP1-KO mice show normal spine density in hippocampal CA1 pyramidal cells and subtle alterations in dendritic complexity. Extracellular field recordings revealed normal basal synaptic transmission and no alterations in synaptic plasticity (LTP). Further, behavioral studies revealed in APLP1-KO mice a small deficit in motor function and reduced diurnal locomotor activity, while learning and memory were not affected by the loss of APLP1. In summary, our study indicates that APP family members serve both distinct and overlapping functions that need to be considered for therapeutic treatments of Alzheimer's disease

    Deletion of the mental retardation gene Gdi1 impairs associative memory and alters social behavior in mice

    Get PDF
    Non-specific mental retardation (NSMR) is a common human disorder characterized by mental handicap as the only clinical symptom. Among the recently identified MR genes is GDI1, which encodes αGdi, one of the proteins controlling the activity of the small GTPases of the Rab family in vesicle fusion and intracellular trafficking. We report the cognitive and behavioral characterization of mice carrying a deletion of Gdi1. The Gdi1-deficient mice are fertile and anatomically normal. They appear normal also in many tasks to assess spatial and episodic memory and emotional behavior. Gdi1-deficient mice are impaired in tasks requiring formation of short-term temporal associations, suggesting a defect in short-term memory. In addition, they show lowered aggression and altered social behavior. In mice, as in humans, lack of Gdi1 spares most central nervous system functions and preferentially impairs only a few forebrain functions required to form temporal associations. The general similarity to human mental retardation is striking, and suggests that the Gdi1 mutants may provide insights into the human defect and into the molecular mechanisms important for development of cognitive function

    The rearing environment persistently modulates mouse phenotypes from the molecular to the behavioural level.

    Get PDF
    The phenotype of an organism results from its genotype and the influence of the environment throughout development. Even when using animals of the same genotype, independent studies may test animals of different phenotypes, resulting in poor replicability due to genotype-by-environment interactions. Thus, genetically defined strains of mice may respond differently to experimental treatments depending on their rearing environment. However, the extent of such phenotypic plasticity and its implications for the replicability of research findings have remained unknown. Here, we examined the extent to which common environmental differences between animal facilities modulate the phenotype of genetically homogeneous (inbred) mice. We conducted a comprehensive multicentre study, whereby inbred C57BL/6J mice from a single breeding cohort were allocated to and reared in 5 different animal facilities throughout early life and adolescence, before being transported to a single test laboratory. We found persistent effects of the rearing facility on the composition and heterogeneity of the gut microbial community. These effects were paralleled by persistent differences in body weight and in the behavioural phenotype of the mice. Furthermore, we show that environmental variation among animal facilities is strong enough to influence epigenetic patterns in neurons at the level of chromatin organisation. We detected changes in chromatin organisation in the regulatory regions of genes involved in nucleosome assembly, neuronal differentiation, synaptic plasticity, and regulation of behaviour. Our findings demonstrate that common environmental differences between animal facilities may produce facility-specific phenotypes, from the molecular to the behavioural level. Furthermore, they highlight an important limitation of inferences from single-laboratory studies and thus argue that study designs should take environmental background into account to increase the robustness and replicability of findings
    corecore