
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
b
o
r
i
s
.
u
n
i
b
e
.
c
h
/
1
7
3
9
9
6
/
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
4
.
1
0
.
2
0
2
2

META-RESEARCH ARTICLE

The rearing environment persistently

modulates mouse phenotypes from the

molecular to the behavioural level

Ivana JaricID
1*, Bernhard Voelkl1, Melanie Clerc2, Marc W. Schmid3, Janja Novak1,

Marianna Rosso1, Reto Rufener4, Vanessa Tabea von Kortzfleisch5, S. Helene Richter5,
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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The phenotype of an organism results from its genotype and the influence of the environment

throughout development. Even when using animals of the same genotype, independent stud-

ies may test animals of different phenotypes, resulting in poor replicability due to genotype-by-

environment interactions. Thus, genetically defined strains of mice may respond differently to

experimental treatments depending on their rearing environment. However, the extent of such

phenotypic plasticity and its implications for the replicability of research findings have remained

unknown. Here, we examined the extent to which common environmental differences between

animal facilities modulate the phenotype of genetically homogeneous (inbred) mice. We con-

ducted a comprehensive multicentre study, whereby inbred C57BL/6J mice from a single

breeding cohort were allocated to and reared in 5 different animal facilities throughout early life

and adolescence, before being transported to a single test laboratory. We found persistent

effects of the rearing facility on the composition and heterogeneity of the gut microbial commu-

nity. These effects were paralleled by persistent differences in body weight and in the beha-

vioural phenotype of the mice. Furthermore, we show that environmental variation among

animal facilities is strong enough to influence epigenetic patterns in neurons at the level of chro-

matin organisation. We detected changes in chromatin organisation in the regulatory regions of

genes involved in nucleosome assembly, neuronal differentiation, synaptic plasticity, and regu-

lation of behaviour. Our findings demonstrate that common environmental differences between

animal facilities may produce facility-specific phenotypes, from the molecular to the behavioural

level. Furthermore, they highlight an important limitation of inferences from single-laboratory

studies and thus argue that study designs should take environmental background into account

to increase the robustness and replicability of findings.
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Introduction

The ability to replicate an observation by an independent study is a cornerstone of the scien-

tific method to distinguish robust evidence from anecdote [1]. However, the replicability of

original research findings was found to be poor across virtually all disciplines of research [2,3],

including preclinical animal research. Thus, the prevalence of irreproducible findings in pre-

clinical research was estimated to be greater than 50% of the published findings [4]. Poor repli-

cability compromises the credibility of animal research, attenuates scientific advances and

medical progress, harms animals for inconclusive research, and puts patients in clinical trials

at risk. Irreproducibility in biomedical research has mostly been attributed to violations of

good research practice, including poor study conduct (e.g., no blinding, no randomisation),

small sample sizes resulting in low statistical power, analytical flexibility (including p-hacking

and HARKing), selective reporting of findings, and publication bias [2,3,5–11].

In animal research, replicability of experimental findings is complicated by phenotypic

plasticity, i.e., the ability of one genotype to exhibit different phenotypes under different envi-

ronmental conditions [12]. Therefore, phenotypic plasticity increasingly receives attention as

an important factor compromising the external validity and replicability of animal research

[13–21]. Whereas genotypic differences can be eliminated by selective breeding [22–24], the

environment in which laboratory animals are born and grow up may differ substantially

between rearing facilities (RFs) [25–27]. As a result, genotype-by-environment interactions

throughout ontogeny can lead to phenotypic differences in morphology, physiology, and

behavior between animals reared in different environments. Due to such phenotypic plasticity,

researchers may fail to replicate research findings, even when using genetically homogeneous

(inbred) animals [28–30]. Therefore, phenotypic plasticity may contribute to replication fail-

ure and conflicting findings in the scientific literature [13,25,31]. However, the magnitude of

this problem is as yet unknown, as existing evidence is generally based on single-laboratory

studies [32–34] and experimentally induced environmental interventions. Here, we sought to

determine the extent to which common differences in housing and husbandry conditions

between RFs modulate the phenotype of the most commonly used inbred strain of laboratory

mouse, C57BL/6J. To do so, we used a systematic multicentre approach, whereby C57BL/6J

mice from the same breeding stock were allocated to and reared in 5 independent animal facil-

ities, before being transported to a single test laboratory. This approach allowed us to assess

the effect of the rearing environment on the phenotype of the mice independent of both geno-

type (e.g., genetic differences due to genetic drift when mice are obtained from different breed-

ers or different breeding stocks) and test condition (i.e., environmental factors affecting the

mice at the time of testing).

Thus, pregnant C57BL/6JRj female mice from a single breeding population (Janvier Labs,

Le Genest-Saint-Isle, France) were randomly allocated and transported to 5 independent RFs,

where their offspring were born and reared until 8 weeks of age under the facility-specific

housing and husbandry conditions (S1A Table). In order to assess the effect of the rearing

environment independently of genotype and test conditions, both male and female offspring

from all 5 RFs were then transported to a single test laboratory that was new for all mice (S1B

Table). Phenotypic differences were assessed at 2 time points (TPs), shortly before shipping

the mice from the RF to the test laboratory (TP1) and after 2 weeks of habituation, over the

course of a 4-week testing period in the test laboratory (TP2; Figs 1A and S1). Specifically, we

examined the extent and persistence of variation in the composition of the gut microbiota

associated with the different RFs and measured differences in phenotypic traits such as body

weight, adrenal weight, neuroendocrine stress reactivity, and behaviour (Fig 1B). In addition,

we assessed differences in neural chromatin accessibility to explore the potential biological
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Fig 1. Study design and effects of RF on gut microbiota diversity and composition. (a) Schematic illustration of the multicentre study

design—genetically homogeneous mice originating from a single inbred stock were reared until the age of 8 weeks in 5 different RFs before

testing for phenotypic differences induced by the different rearing conditions in a single testing laboratory. (b) Effects of the RF were

evaluated at 2 TPs, first, at the end of the rearing period in each of the 5 RFs (TP1) and during the testing period in the testing laboratory

(TP2). Outcome measures assessed at both TP1 and TP2 included gut microbiota, body weight, and chromatin profiles using ATAC-seq,

PLOS BIOLOGY Rearing environment modulates mouse phenotype
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basis of behavioural differences (Fig 1B). The study protocol was preregistered (10.17590/

asr.0000201) and is further detailed in the Methods section.

We generated a comprehensive data set by exploring the extent and persistence of variation

in the gut microbiome, associated variation in physiological and behavioural traits, and

changes in neuronal chromatin organisation as a molecular substrate by which phenotypic dif-

ferences in behaviour might be mediated. Our study demonstrates that the common environ-

mental differences between RFs can produce facility-specific phenotypes, from the molecular

to the behavioural level, thereby compromising replicability of research findings.

Results

Rearing facility shaped the gut microbiota composition

The gut microbiome has been reported to play an important role in shaping the host phenotype

[35–39]. Therefore, we first examined the extent to which the composition of the gut microbiota

varied in response to the macroenvironments of the different RFs, and whether these differences

persisted after the transfer to the common macroenvironment of the test laboratory.

We first analysed whether the gut microbiome of mice from different RFs differed in α-

diversity measures. In males, effects of the RF were significant for both predicted and observed

taxa richness, but there was little effect on overall diversity and evenness (Fig 1C and S2 Table).

At TP2, we observed an increase in all metrics of α-diversity, except for observed species rich-

ness (Fig 1C and S2 Table). Similar patterns in terms of differences between RFs for taxa rich-

ness were observed in females; however, there was no change in α-diversity metrics across TPs

(Fig 1D and S2 Table). Taken together, these results suggest that the macroenvironment of the

rRF can lead to significant differences in the richness of the gut microbiome community.

Next, we evaluated the differences in the microbiome composition (β-diversity) based on

the Bray–Curtis dissimilarity between samples [40]. Overall, we found pronounced differences

between mice reared in different RFs. When assessing the amount of variation in the data

explained by RF at each TP, the effect was most pronounced at TP1, accounting for 28.7% of

overall variation in males (Fig 1E and 1F and S3 Table) and 29% in females (Fig 1G and 1H

and S3 Table). Importantly, the differences in microbiome composition persisted across TPs,

although the amount of variation explained by RF dropped to 20.4% in males and 17% in

females. This implies that a large part of the initial differences in the microbiomes of mice

from different RFs persisted throughout the 6 weeks in the test laboratory, although they did

converge to some extent once they were housed together at the same test facility. When further

investigating how overall community composition varied across RFs, we found a clear separa-

tion along principal coordinate axis 1 (PCoA1) between RFs 3 and 5 and RFs 1, 2, and 4 in

both males (both TPs) and females (TP1). Clustering analysis suggested that the type of mouse

diet (specifically diet supplier; S1A Table) was driving the grouping of the mice into these 2

populations (S2A Fig and S1 Data). Interestingly, these 2 populations differed in abundance of

while behavioral tests (open field and light dark box tests) and physiological measures of stress (HPA axis reactivity test (SRT) and relative

adrenal weight were limited to TP2). Values for α-diversity metrics for (c) male mice and (d) female mice from different RFs (n = 6 mice/

sex/RF/TP). (e-g) Ordination plots visualizing PCoA based on Bray–Curtis dissimilarity between samples of male (e) and female (g) mice

from different RFs, split by TPs. (f-h) Differences between loadings of samples on the first 3 PCoA axes in male (f) and female (h) mice.

Box plots show the first and third quartiles; horizontal line represents the median; whiskers represent the mean variability outside the

upper and lower quartiles. Individual points represent outliers. TP1: 8 weeks of age (PND 56); TP2: 14.5 weeks of age (PND 104). The raw

data underlying this figure are available in the Figshare repository https://doi.org/10.6084/m9.figshare.21082195. The 16S rRNA gene

sequencing data are available from the ENA under accession number PRJEB49361. ATAC-seq, assay for transposase-accessible chromatin

using sequencing; ENAAU : AbbreviationlistshavebeencompiledforthoseusedinFigs1 � 4:Pleaseverifythatallentriesarecorrect:, European Nucleotide Archive; HPA, hypothalamus–pituitary–adrenal; PCoA, principal coordinate analysis; PND,

postnatal day; RF, rearing facility; SRT, stress reactivity test; TP, time point.

https://doi.org/10.1371/journal.pbio.3001837.g001
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Firmicutes and Bacteroidetes (S2B Fig), 2 phyla that are associated with numerous phenotypic

differences in health and disease in animal and human studies [41–43]. Overall, these findings

show that the rearing environment can lead to substantial and temporally persistent composi-

tional differences in the gut microbiome community, which, in turn, may drive phenotypic

variation [38].

Rearing facility persistently affected body weight

To assess phenotypic differences between mice from different RFs, we first measured the body

weight of the mice, which often correlates with other physiological variables and can poten-

tially serve as latent variable in studies on mouse energy metabolism and metabolic diseases

[44–46]. Although body weight is a highly heritable trait, we found that genetically homoge-

neous mice reared in different RFs differed markedly in body weight, and these differences

persisted at the test laboratory throughout the experiment. RF was the only factor that had a

strong and persistent effect on body weight in both males and females, while variation in litter

size, litter sex ratio, and group size after weaning had no significant effects (Fig 2A and S4

Table). This finding is in line with the recent findings of Corrigan and colleagues [44], who

found that the institution where experiments were conducted was among the main factors

influencing metabolic rate and body weight in C57BL/6J mice.

Rearing facility modulated the behavioural phenotype

To analyse phenotypic differences in behaviour, we combined variables derived from 2 stan-

dard behavioural tests (open field (OF) and light–dark box (LDB)) in a multivariate analysis of

variance (MANOVA). We found that RF had a strong effect on the behavioural phenotype,

explaining 14.4% and 12.4% of the total variation in males and females, respectively. After con-

trolling for fixed effects, RF even explained 23% and 25% of the remaining variation in behav-

ioral outcomes (partial η2 estimate). Moreover, whereas variation in litter size, litter sex ratio,

and group size after weaning had no effect on behaviour in both males and females, oestrous

cycle stage on the test day had a strong effect in females (S5 Table and S3A–S3C Fig).

Using linear discriminant function analysis (LDA) on the combined behavioural data (S6

Table), we were able to correctly classify 58% of all male mice and 53% of all female mice

according to their RF, which is substantially more than the 20% predicted by chance (Χ2 =

55.1, p = 1.14 × 10−13 and Χ2 = 41.7, p = 1.08 × 10−10, respectively, for males and females; Fig

2B and S7 Table). In males, the first 2 discriminant functions together explained 79% of the

variation between RFs, whereby the coefficients of the discriminant functions indicate that dis-

tance travelled in the OF and time in the light compartment in the LDB, 2 main measures of

exploration and emotionality, contributed most to the first function, while time in the light

compartment and number of entries into the light compartment in the LDB contributed most

to the second function. In females, the first 2 functions together explained even 90% of the

between-facility variance. Distance travelled in the OF contributed most to the first function,

while time in the centre in the OF contributed most to the second function. These findings

demonstrate that common environmental differences between animal facilities during the first

8 weeks of postnatal development can substantially alter key aspects of the behavioural pheno-

type of mice, which persist into adulthood.

Rearing facility did not affect neuroendocrine stress reactivity but adrenal

weight

Further, we predicted that differences in the environmental conditions between RFs during

the late prenatal, early postnatal, and adolescent period may differentially shape the reactivity

PLOS BIOLOGY Rearing environment modulates mouse phenotype
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Fig 2. Effects of RF on the behavioral and physiological profile of the mice. (a) Body weight persistently varied by RF in

both males and females (n = 6 mice/sex/RF for TP1; n = 24 mice/sex/RF for TP2). (b) Behavior of the mice varied

consistently by RF both in males and females. In the LDA plots, color indicates RF, and the circles represent classification

based on discriminant function analysis (n = 12 mice/sex/RF). (c) RF did not affect plasma corticosterone levels in the SRT

both in males and females (n = 12/mice/sex/RF), while relative adrenal gland weights (n = 24/mice/sex/RF) were affected

PLOS BIOLOGY Rearing environment modulates mouse phenotype
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of neuroendocrine systems, including the reactivity of the hypothalamus–pituitary–adrenal

(HPA) axis to stressors later in life [47–50]. We, therefore, examined whether RF altered the

animals’ HPA stress reactivity by measuring changes in plasma corticosterone during and

after a brief period (20 minutes) of physical restraint in a plastic tube. However, we found no

consistent differences in HPA stress reactivity between mice reared in different RFs (Fig 2C

and S8 Table). In males, there was a strong effect of litter size on basal corticosterone levels,

and group size after weaning strongly affected both basal levels and acute response levels of

corticosterone (S8 Table). As expected, corticosterone levels in females were almost double

those in males [51,52] (Fig 2C), and the oestrous cycle stage had a strong effect on basal corti-

costerone levels (S8 Table and S4 Fig). However, we found that RF had a strong effect on adre-

nal weight, at least in males (Fig 2D and S9 Table). These results suggest that the chronic stress

engendered by standard housing conditions and husbandry procedures induced changes in

adrenal gland morphology and function, which may have buffered the neuroendocrine stress

response to acute stressors [53].

Rearing facility influenced chromatin organisation in neuronal nuclei

We next explored at the molecular level whether environmental differences between RFs affect

epigenetic mechanisms in brain areas involved in behavioural control. More specifically, we

assessed chromatin plasticity since chromatin is considered as an interface between the envi-

ronment and the genome and plays a key role in the regulation of gene expression, mediating

various aspects of plastic behavioural responses to environmental perturbation [54,55]. Since

chromatin organisation is tissue and cell type specific, we performed the assay for transposase-

accessible chromatin using sequencing (ATAC-seq; [56]) on neuronal nuclei extracted from

the ventral hippocampus, a brain area involved in modulating emotional behaviour and stress

responses in mice [57,58]. This analysis was limited to males, as they showed more pro-

nounced phenotypic variation, especially in behavioural traits.

We found that most samples clustered based on RF, indicating pronounced differences in

chromatin accessibility. This pattern was observed by looking at both the overall dissimilarity

of all ATAC-seq profiles and the 10% most variable peaks (Fig 3A). RF explained 55.33% and

36.79% of overall variation at TP1 and TP2, respectively (Figs 3B and S5 and S10 Table).

Remarkably, variation explained by RF was much larger in the open chromatin sites (77.5% at

TP1 and 70.9% at TP2) than in the closed sites (48.2% at TP1 and 28.4% at TP2), suggesting

that these differences have functional consequences (Fig 3B and S10 Table).

In terms of genomic features, the most accessible sites were preferentially located within the

promoter regions, further corroborating the potential functional significance of the observed

changes, while the less accessible sites were mainly located in the intergenic regions and

introns (Fig 3C and 3E). In addition, the number of genes associated to the most accessible

peaks were common between subjects, whereas less accessible sites and associated genes

behaved much more randomly and decreased with the number of selected samples (Fig 3D).

Next, we generated lists of all differentially accessible regions (DARs) in the ventral hippo-

campus of mice from different RFs and mapped them to their adjacent genes for all compari-

sons at both TPs separately (S2 Data). Among the genes with the highest fold change, we, for

only in males (d). Box plots include individual data points and show the first and third quartiles; horizontal line is the

median; whiskers represent the variability outside the upper and lower quartiles. TP1: 8 weeks of age (PND 56); TP2: 14.5

weeks of age (PND 104). The raw data underlying this figure are available in the Figshare repository https://doi.org/10.

6084/m9.figshare.21081949. LDA, linear discriminant function analysis; PND, postnatal day; RF, rearing facility; SRT,

stress reactivity test.

https://doi.org/10.1371/journal.pbio.3001837.g002
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Fig 3. Differences in neuronal chromatin accessibility between males from different RFs. (a) Sample correlation matrices based on all sites

and the 10% most variable ATAC-seq sites (n = 5 mice/RF/TP). (b) Manhatten distances between samples for all sites and open chromatin sites

visualised by t-SNE. (c) ATAC-seq accessibility signal in response to the different RFs and TPs. Heatmap representation of the most and least

accessible sites. The color represents the intensity of chromatin accessibility, from gain (yellow) to loss (dark blue), calculated by using row wise

Z-scores (the values are scaled by subtracting the average across samples and by dividing by the standard deviation across samples). (d) Bar

PLOS BIOLOGY Rearing environment modulates mouse phenotype
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instance, found Col19a1 (encoding nonfibrillar collagen XIX), where chromatin accessibility

differed between RFs and remained consistent across both TPs (Figs 3G and S5E). This indi-

cates that persistent chromatin regulation occurred during the rearing period in response to

the specific environment of the RF in genes necessary for hippocampal synapse formation

[59–61]. We also found DARs between RFs that changed between TP1 and TP2 and mapped

them to genes such as Dlg 2 (discs large homolog 2, also known as postsynaptic density pro-

tein-93 (PSD-93), Fzd9 (encoding Frizzled9, one of the Wnt receptors), and Lrrc4c (encoding

Leucine-Rich Repeat-Containing 4C). Changes in these genes, important for postsynaptic

plasticity (Figs 3G and S5E) [62–65], indicate that mice from different RFs were using different

chromatin regulation strategies to adapt to the new environment of the test laboratory.

Rearing facility induced chromatin changes relevant to neuronal function

To assess the functional significance of environmentally induced chromatin changes, we per-

formed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analyses, which focused on genes mapped to DARs located near transcription start site (TSS).

The GO analysis revealed that differences between RFs persistently influenced nucleosome

function and regulatory processes important for hippocampal synaptic plasticity and neurogen-

esis, such as the response to epidermal growth factor (EGF) [66], regulation of Notch [67–69],

and Transforming growth factor beta (TGFβ) receptor signaling [70,71] (Fig 4A and 4B). There

was also a clear effect of RF on genes involved in the regulation of various behavioural processes

and presynaptic plasticity events, targeting mainly GABAergic and glutamatergic transmission

(S3A and S3C Data). This effect was evident only at TP1, while at TP2, enriched terms were asso-

ciated with the modification of postsynaptic structure, regulation of actin cytoskeleton, dendrite

development, and neurotransmitter receptor complex (S4B and S4D Data and Fig 4A and 4B).

The KEGG analysis highlighted an overrepresentation of genes belonging to adherens junc-

tion, dopaminergic synapses, hippo, apelin, and insulin resistance signaling pathway. These

pathways, which have an important role in maintaining hippocampal development, morphol-

ogy, and plasticity, were significantly affected by the RF at both TPs and likely have functional

consequences for behavioural regulation [72–75]. Enrichment of genes relevant to neurotro-

phin, long-term depression and potentiation, serotonergic and glutamatergic synapse path-

ways was evident only at TP1 (Figs 4C and S4A). These differences diminished after the mice

had spent 6 weeks in the test laboratory. At TP2, we noticed significant differences for Notch,

prolactin, relaxin, and AMPK signaling pathways, indicating their potential role in behavioral

adaption to the new environment (Figs 4C and S4A).

Overall, these findings demonstrate that facility-specific macroenvironments influenced

developmental programs during the late prenatal, early postnatal, and adolescent period, by

affecting neuronal chromatin accessibility profiles and shaping the mice’s behavioural

phenotypes.

Discussion

In this study, we found that common differences in standard housing and husbandry practices

between animal facilities modulated morphological, physiological, and behavioural traits in a

graphs representing the number of genes associated with the most and least accessible peaks. (e) Spidergraph representing the genomic features

mapped by all (black), open (blue), or closed (red) sites. (f) Chromatin accessibility profiles of Col19a1, Dlg 2, Fzd9, and Lrrc4c. The raw data

underlying this figure are available from the NCBI GEO database under accession number GSE191125. The analysis script is available at the

GitHub repository https://github.com/MWSchmid/Jaric-et-al.-2022. ATAC-seq, assay for transposase-accessible chromatin using sequencing;

GEO, Gene Expression Omnibus; RF, rearing facility; TP, time point.

https://doi.org/10.1371/journal.pbio.3001837.g003
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genetically homogeneous (inbred) cohort of C57BL/6J mice from a single breeding colony,

thereby producing facility-specific phenotypes. Phenotypic plasticity is ubiquitous in nature,

and studies under controlled laboratory conditions have long shown that many aspects of

housing and husbandry conditions can alter the phenotype of mice throughout ontogeny [76–

83]. In fact, this is the main reason why textbooks of laboratory animal science recommend

Fig 4. Predicted biological processes, cellular components, and KEGG pathways affected by differential rearing environment. GO analysis of genes

showing differential chromatin accessibility between the different RF presented for each TP (a-b); KEGG pathway analysis of the genes showing differential

chromatin accessibility between the different RFs for each TP. Fields marked with an asterisk depict comparisons that were statistically significant between TPs

(two-sided Fisher’s exact test, adjusted for multiple testing, FDR< 0.05). FDR, false discovery rate; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes

and Genomes; RF, rearing facility; TP, time point.

https://doi.org/10.1371/journal.pbio.3001837.g004
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environmental standardisation to minimise variation in experimental results [22]. However,

previous studies have shown that such standardised experiments characterizing the phenotype

of mice may produce results that are idiosyncratic to the laboratory where the study was con-

ducted [44,84]. Our findings corroborate and extend these findings. In previous multicentre

studies [44,84], the effect of the rearing environment was confounded with the specific test

conditions at the test centre. Thus, in these studies, phenotypic differences between animals

tested in different facilities may reflect differences in the state of the animals while being tested.

In contrast, in the present study, phenotypic differences between mice from different RFs

must reflect differences in the underlying phenotypic traits. This is guaranteed by the fact that

all mice were derived from a single breeding colony (minimizing the risk of genetic differences

between mice from different RFs), that they were all tested in the same test laboratory under

the same test conditions by the same experimenters, and that test order was counterbalanced

for RF.

We also confirmed and extended previous findings demonstrating that variation in micro-

biome composition is strongly determined by the rearing site [37,85–88]. Previous studies

found that although vendor-specific differences in the gut microbiome of C57BL/6J mice may

decrease over time at a new site, they persisted throughout studies lasting for 12 weeks [37]

and 24 weeks [27], respectively. However, these mice had been housed in individually venti-

lated cages (IVCs) or microisolater cages, preventing contamination between cages. Our

results extend these findings by showing that such animal facility-dependent differences in

microbiome composition persisted in the testing facility, even though our mice were housed

together in 1 housing room in conventional open cages.

Further, our findings suggest that environmental differences between RFs influence neuro-

nal developmental patterns by modulating gene regulatory networks involved in the regulation

of hippocampal synaptic plasticity and neurogenesis. Such effects on the chromatin profile of

functionally relevant genes may be responsible for persistent changes in behavioural traits

[89,90]. However, we also found that some of the pathways affected by the rearing environ-

ment maintained plasticity, possibly to facilitate adaptation to environmental change, as

shown by chromatin reorganisation in response to the transfer to the test laboratory at 8 weeks

of age. This result deserves further investigation as chromatin plasticity is considered to pro-

vide a molecular mechanism for adaptive plasticity under different environmental conditions,

as shown for example in Drosophila melanogaster [91].

Our findings raise important questions about the mechanism underlying the observed phe-

notypic differences that cannot be answered based on the present data but need to be tested

independently in follow-up studies. For example, given the observed association between diet

and microbiome composition, the question arises whether such differences would also occur if

different diets were fed in the same facility, and whether diet might also explain some of the

variation in epigenetic and behavioural profiles. Several studies have shown that gut micro-

biota can affect brain development and behavioral functions [92,93]. These effects might be

mediated by gut-microbiota products that can cross the blood brain barrier and modulate the

chromatin landscape in neurons, which, in turn, can influence behavior [94–96]. Controlled

experiments with different diets, fecal transplants, and treatment with antibiotics would be

needed to elucidate these potential causal mechanisms further.

In conclusion, our findings could help to explain replicability issues in animal research

[2,97]. Poor replicability has mostly been attributed to publication bias, lack of statistical

power, analytical flexibility, and other risks of bias [3,7,98–100], albeit empirical evidence has

remained elusive [101]. In contrast, the large between-study heterogeneity caused by rigorous

within-study standardisation has long been ignored as a cause of poor replicability, despite

both theoretical and empirical evidence [13,14,25,31,83,102–106]. Our findings highlight an
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important limitation of inferences from single-laboratory studies and suggest that the (early)

environmental background of animals—just like their genetic background [107–109]—should

be accounted for by study design to produce more robust and replicable research findings.

Thus, results from standardised single-laboratory studies might only be considered as prelimi-

nary evidence. Whether using animals from multiple breeding or RFs provides an effective

solution to systematically heterogenise the environmental background of study populations

remains to be tested. However, we hope that our findings will stimulate research to find other,

perhaps more practicable ways to produce robust and replicable research results.

Methods

Study preregistration and ethical statement

Before data acquisition started, the study protocol was preregistered under the DOI number:

10.17590/asr.0000201 at the Animal Study Registry, operated by the German Centre for the

Protection of Laboratory Animals (Bf3R) at the German Federal Institute for Risk Assessment

(BfR).

All animal experiments were conducted in full compliance with the Swiss Animal Welfare

Ordinance (TSchV 455.1) and were approved by the Cantonal Veterinary Office in Bern, Swit-

zerland (permit number: BE12/19). RFs located in Hannover and Münster did not require sep-

arate approval by governmental authorities for an experimental animal study, because animals

were only housed in those laboratories, while all experimental procedures were carried out in

Bern under the abovementioned license.

Animal subjects and study design

Nine-week-old, time-mated, primiparous pregnant C57BL/6JRj females in the last third of

pregnancy (gestational day 14 or 15), all derived from the same breeding stock and colony

room of a commercial breeder (Janvier Labs, Le Genest-Saint-Isle, France), were randomly

allocated to 5 different rearing animal facilities (n = 18 per facility). The RFs were located at

the following institutions: (i) Institute of Laboratory Animal Science, Hannover Medical

School, Germany (RF 1 and RF2); (ii) Division of Animal Welfare, Vetsuisse Faculty, Univer-

sity of Bern, Switzerland (RF 3); (iii) Department of Behavioural Biology, University of Mün-

ster, Germany (RF 4); and (iv) Institute of Anatomy, University of Zürich, Switzerland (RF 5).

Pregnant dams were singly housed for approximately 5 days, from arrival at the RF until partu-

rition. Dams were monitored daily for parturition and day of birth was defined as postnatal day 0

(PND 0). Litters were not culled during the lactation period and all healthy pups were weaned at

PND 22 according to predefined weaning criteria (S6 Fig). At weaning, in each RF from the 18

possible litters, all litters that contained at least 3 male and/or female pups were used to randomly

select 12 groups of 3 littermates for each sex. If fewer than 12 groups with at least 3 littermates of a

sex were available, these were complemented by litters with at least 2 pups of that sex. This strategy

resulted in a total of 326 weaned mice. Litter size, litter sex ratio, as well as the final number of

weaned males and females from each litter are presented in S11 Table.

From each litter, 3 (or 2) pups per sex were selected randomly and reared together until the

age of 8 weeks (PND 56) according to the specific protocols of housing and husbandry of each

of the 5 RFs (e.g., type of cages, handling method, bedding, nesting material, diet, light

regime). Detailed housing and husbandry conditions are reported in S1A Table. The first 8

weeks of postnatal life were selected because they cover 2 sensitive developmental periods (i.e.,

early life and adolescence) in mice [110]. These periods represent a critical stage of brain [111–

115], HPA axis [48,116], and gut microbiome development [39,117] when environmental

inputs may shape the later-life phenotype of mice at different levels of organisation.
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The effect of rearing environment was evaluated at 2 TPs (Figs 2B and S1). At TP1, 1 mouse

per sex and cage of all cages with 3 mice was weighed and killedAU : PleasenotethatasperPLOSstyle; donotusesacrificeinreferencetokillingofanimalsduringexperiments:Inaddition; use}euthanize}useonlywhenanimalwaskilledbecauseofdamagesustainedinexperiment:Ifkillingtheanimalwaspartoftheexperiment; thenusethewordkillorhumanelykill:Hence; allinstancesof }sacrificed}and}euthanized}and}euthanasia}havebeenreplacedwith}killed}and}killing; }respectively:within each of the 5 RFs and

brain and cecal samples were harvested for epigenomic and microbiome analyses. To ensure

that observed differences are attributed only to the differential rearing environments, we stan-

dardised the tissue collection procedure. All mice were killed at the beginning of the light cycle

(within the first 3 hours after the lights were turned on) by the same person who was not in

contact with those animals before and who was using the same equipment in each of the 5 RFs.

Blinding with regard to RF was not possible for weighing and organ collection since the experi-

menter needed to travel to each RF.

At PND 58, the remaining pairs of male and female offspring (n = 240; 24 mice per sex per

RF) were transferred from the 5 RFs to the testing laboratory, located at the Vetsuisse Faculty

of the University of Bern (testing laboratory). The testing lab in Bern was separate from the RF

in Bern. To ensure that all animals experienced approximately the same treatment during

transport to the testing facility, the driver of the car transporting the animals from the RF in

Bern to the adjacent test laboratory in Bern was asked to take a 2-hour detour. Special efforts

were made to reduce any possible transport-induced stress. The same-sex cage mates were

placed into 4 compartment transport boxes (Type 500005L; Bio Services BV, Uden, the Neth-

erlands), with 2 mice per compartment and shipped by a professional company using an

environmentally controlled vehicle. Each compartment contained 1 cm of bedding, nesting

material from the home cage, food pellets, and hydrogel.

Upon arrival, animals were checked for health and pair housed in freshly bedded Type 3 cages

(floor area 820 cm2) and habituated to the new animal facility for 2.5 weeks. Each Type 3 cage

contained 3 cm of bedding (OSafe Premium Bedding, SAFE FS 14, Safe-Lab, Rosenberg, Ger-

many), a red mouse house (Tecniplast, Indulab, Gams, Switzerland), a medium-size cardboard

tunnel (Play tunnel, #CPTUN00016P, Plexx B.V., the Netherlands), and 10 g of nesting material

(Sizzle Nest #SIZNEST00016P, Plexx B.V., the Netherlands). Standard rodent chow (Kliba Nafag

#3430, Switzerland) and tap water were available ad libitum. Females and males were housed in

separate rooms, and all animals were kept on a 12:12 light/dark cycle, with lights on at 12:00 h.

Detailed housing and husbandry conditions in the testing facility are reported in S1B Table.

The day after arrival in the testing facility, animals were individually marked by ear tattoo,

after which cages were assigned new identification numbers, and positions of cages within and

between cage racks were randomly reshuffled as part of the blinding procedure. Further infor-

mation on blinding is available as a supporting text.

Behavioural and physiological phenotyping commenced after an acclimatisation period of

2.5 weeks. We focused on phenotypic traits of exploration, emotionality, and stress reactivity

that are known to be sensitive to environmental variation during early ontogeny

[48,112,118,119]. Two common tests for exploration and emotionality, the OF test and the

LDB test, were conducted in that order, with a break of 7 days in between, followed by an SRT

after another break of 7 days. For these tests, 1 mouse per cage, sex, and RF (n = 120) was used.

After 1 additional week (around 14.5 weeks of age; PND 102; TP2), all mice (n = 240) were

killed for postmortem analyses. Body weights were also recorded for each mouse during cage

changes throughout the acclimatisation period and prior to killing. To avoid possible influ-

ences of the circadian rhythm on behaviour, corticosterone secretion, and molecular readouts,

all procedures were performed during the light phase (from 12:00 h to 16:30 h).

Tissue sampling procedure

All animals were killed by cervical dislocation. Whole brains were immediately removed and

quickly frozen in a hexane bath on dry ice before being stored at −80˚C. The brain region of
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interest, i.e., ventral hippocampus, was dissected later for subsequent molecular analyses.

Adrenal glands were removed, dissected from fat, and weighed using a precision scale (Mettler

AE160, Mettler-Toledo, Switzerland). The mouse cecum together with its content was isolated,

snap frozen in liquid nitrogen, and kept at −80˚C for microbial DNA extraction and

sequencing.

Gut microbiota composition analysis

For gut microbiota analysis, samples of mouse caeca were taken at both TPs, at each RF, and at

the end of the experiment at the testing laboratory. Six cages per sex and RF were randomly

selected from all cages containing 3 littermates after weaning (n = 180). One mouse from each

selected cage was killed in the RF at 8 weeks of age (TP1; PND 56; n = 60), while the other 2

cage mates (n = 120; one underwent behavioural testing and one remained naïve) were killed

in the testing laboratory at TP2 (14.5 weeks of age; PND 102).

Microbial DNA was extracted from cecal content using the Allprep DNA/RNA mini kit

(Qiagen, Hilden, Germany) according to the manufacturer’s instruction. DNA was eluted and

concentrations were assessed using the QuantiFluor dsDNA system (Promega).

The 16S rRNA V4 region was amplified using the following primers 515f-Y: GTGY-

CAGCMGCCGCGGTA and 806r-N: GGACTACNVGGGTWTCTAAT and The Q5 high-

fidelity DNA polymerase kit (New England BioLabs, UK). In a total volume of 25 μL, 2 μl of

extracted DNA was added to a PCR reaction mix prepared by mixing a final concentration of

1X Q5 reaction buffer, 200 μM of dNTPs, 0.5 μM of each primer, 0.02 U/μL of Q5 5 High-

Fidelity DNA Polymerase, and 1X of Q5 High GC enhancer. The first PCR reaction was car-

ried out using the following conditions: (i) first denaturation: 95˚C for 30 s; (ii) denaturation

in each PCR cycle: 98˚C for 10 s; (iii) annealing: 56˚C for 30 s; (iv) extension: 72˚C for 30 s; (v)

final extension at the end of the reaction: 72˚C for 2 min, followed by a hold step at 4˚C. The

cycles 2 to 4 were repeated 8 times. The PCR products were purified using CleanNA

CleanNGS purification beads (CNGS0050; LabGene Scientific SA), resuspended in 15 μl of EB

buffer, and served as templates in the second PCR reaction. In the second PCR step, unique

dual index barcodes of length 2 × 8 nt were added to each sample, which allowed equimolar

pooling of samples after quantification of the target product using the Agilent fragment ana-

lyzer (Agilent). In total, the final library pool contained 176 samples, 3 bacterial mock commu-

nities, and 20 DNA extraction blanks. The finished library pool was sequenced using the

NovaSeq 6000 platform (Illumina, USA) in a single lane of SP flow cell at the Functional Geno-

mics Center Zürich.

The raw sequencing data were analysed using the DADA2 pipeline (version 1.14 16), and

individual reads were grouped into amplicon sequence variants (ASVs). The final table con-

tained 1,560 ASVs. After removal of the blank and mock samples from the data, the individual

library sizes ranged from 47,910 to 1,616,753, with a median of 843,361 (S6A Fig). To mitigate

the effect of variation in library size across samples, we performed random down-sampling of

reads within each sample to an even library size across samples. Given the minimum read count

in the data, counts were rarefied to a depth of 47,000 reads per sample (S6B Fig). We calculated

both α diversity (within sample diversity) and β diversity (between-sample diversity) in order to

assess the effect of RF on microbial community composition within and between mice.

For α diversity, the following metrics were calculated: (i) observed species richness, which

represents the total number of species counted within a sample; (ii) Chao1 richness, for esti-

mation of the “true” species diversity, which is calculated using the following formula:

Chao1 ¼ Sobs þ
F2

1

2F2
, where Sobs stands for the observed number of species, and F1 and F2 stand

for the number of species with 1 or 2 observed reads, respectively; (iii) Shannon diversity
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index, which illustrates the diversity within a sample, taking both richness and evenness into

account. It is calculated using the following formula: Ht0 ¼ �
Ps

i¼1
pilnðpiÞ, where S represents

the total number of species and p represents the proportion (n/N) of individuals of 1 particular

species found (n), divided by the total number of individuals found (N); and (iv) Pielou even-

ness for estimation of how similar in numbers each species in a sample is. It is calculated using

the formula J ¼ Ht
0

lnðSÞ, whereHt
0

is the Shannon index and S is the total number of species in a

sample. ANOVA was used to test the effect of RF and TP on α-diversity measures.

To analyse changes in microbiota composition between mice reared at different TPs or

RFs, the Bray–Curtis dissimilarity between samples was calculated using the formula

BCij ¼ 1 �
2Cij
SiþSj

, where i and j are the 2 samples, Si is the total number of species counted in

sample i, Sj is the total number of species counted in sample site j, and Cij is the sum of only

the lesser counts for each species found in both samples. Principal coordinate analysis (PCoA)

was used to visualise the similarity in microbiome composition between samples and to

retrieve sample loadings onto the first 3 PCoA axes. A permutational analysis of variance

(PERMANOVA) was used to assess the proportion of variation in microbiome composition

explained by RF and age (i.e., TP).

Based on our study design, there were 3 groups of cecal samples: (i) samples collected at

TP1 (within each of RFs); (ii) samples collected at TP2 from mice that underwent behavioural

testing; and (iii) samples collected at TP2 from mice that did not undergo behavioural testing

and that were used for chromatin profiling. To balance the study design (there were double

number of samples collected at TP2 comparing to the number of samples collected at TP1), we

assessed whether the 2 sets of samples (from behaviourally tested BT mice and mice used for

molecular analysis, i.e., chromatin profiling MA mice) collected at TP2 differ in terms of spe-

cies richness, diversity, and overall community composition. Our analysis showed that there

were no statistically significant differences in either α diversity (assessed using Wilcoxon

signed-rank test) or β diversity (assessed using PERMANOVA) in any of the tested parameters

between BT and MA mice (S7 Fig). Therefore, only MA mice were considered for the final

analyses. Differential abundance analysis was performed by using an adjusted p-value thresh-

old of 0.05 and a log2-fold change threshold of 1.

All analyses related to the gut microbiome were done in R (version 4.1.0) using the libraries

vegan (2.5–7) for down-sampling, PERMANOVA, and calculation of observed/chao1 species

richness, microbiome (1.14.0) for calculation of Shannon diversity and Pielou evenness, amp-

vis2 (2.7.2) for PCoA ordination, stats (4.1.0) for ANOVA calculations and hierarchical clus-

tering, fpc (2.2–9) for definition of cluster number, factoextra (1.0.7) and ggdendro (0.1.22) for

dendrogram creation, DESeq2 (1.32.0) for differential abundance analysis, and ggplot2 (2.2.1)

and patchwork (1.1.1) for visualisation.

Testing for behavioural and physiological responses

The set of behavioural outcomes belongs to the confirmatory part of the study, and appropriate

sample size was determined a priori by a power analysis using simulated sampling for a two-

way ANOVA design. The power analysis was done for the main outcome variable, plasma cor-

ticosterone levels in the SRT. Based on historical data [120,121], we expected to observe an

effect of medium size (i.e., means estimates for 2 randomly chosen RFs are expected to be in

the range of 20%, equivalent to a ratio of between-facility: within-facility variation of 1:2). This

resulted in a required minimal sample size of 12 mice per RF and sex. Further information on

the sample size calculation is available in the supporting information file (S8 Fig). The same

sample size (n = 12 per RF and sex) was also used for behavioural testing.
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The order of behavioural test trials for all mice was randomised using the random number

generator of the Mathematica software (version 11; Wolfram Research, Champaign, Illinois,

USA). Forty mice (20 males and 20 females) were randomly assigned to each of 3 experiment-

ers. Mice were handled by the same experimenter during the habituation period, cage change,

and behavioural testing. Animals were tested in parallel (at the same time, but in separate

apparatuses) by 2 experimenters, with 3 different combinations of 2 experimenters each day.

Testing was carried out in batches during 4 consecutive days. Males were tested on the first

and third day, while females were tested on the second and fourth day. Each day’s testing was

done by each experimenter in 3 blocks of 5 animals, each. The randomisation and allocation

procedures were restricted so that, in each block for each experimenter, there was exactly 1

mouse from each RF in random order, with the addition that in no case animals tested at the

same time were from the same RF.

Open field test

The OF test was performed in a polycarbonate box (45 × 45 × 45 cm; illumination set to 120

lux) with grey walls and a white base plate. Each mouse was placed in the left (close to the

experimenter) corner, facing the wall, and allowed to freely explore the open field for 10 min.

Recording started immediately after placing the animal in the box. The behaviour of the first 5

min of the test was analysed.

The behaviour was video recorded using an infrared camera system, and mice were auto-

matically tracked from videos using EthoVision XT software (version 11.5; Noldus, Wagenin-

gen, the Netherlands). The space was virtually divided into a centre zone (20 × 20 cm) and an

outer zone. The total distance traveled, the average velocity, the number of entries into the cen-

tre area, the time spent in the centre, and the latency to the first centre entry were scored.

Light–dark box test

The LDB test was conducted in a box (37.5 × 21.5 × 15 cm) consisting of a small, closed dark

compartment (12.5 × 21.5 × 15 cm; illumination set to 5 lux) and a larger light compartment

(25 × 21.5 × 15 cm; illumination set to 200 lux) connected by a sliding door. Each mouse was

placed in the dark compartment of the apparatus and testing began after the delay of 5 s as the

sliding door to the light side of the box was raised, and the duration of the test was 10 min. The

behaviour of the first 5 min of the test was analysed. The total distance traveled, the average

velocity in the light compartment, the time spent in the light compartment, the number of

entries into the light compartment, and the latency to enter the light compartment were mea-

sured from video recordings using EthoVision XT software (version 11.5; Noldus, Wagenin-

gen, the Netherlands).

Stress reactivity test

The SRT was performed according to established protocols [122] with slight modifications. In

brief, each mouse was taken out of its home cage and a first blood sample was collected by inci-

sion of the ventral tail vessel with a scalpel blade (Paragondisposable sterile scalpels No. 10,

Paragon Medical, Lausanne, Switzerland). The procedure was limited to 2 min to obtain basal

levels of corticosterone unaffected by the sampling procedure. Immediately after blood collec-

tion, the mouse was restrained for 20 min in a 50-ml plastic conical tube (11.5 cm × 2.5 cm;

Fisherbrand Easy Reader, Fisher Scientific AG, Reinach, Switzerland) with custom-made holes

for breathing and for the tail. At the end of the 20-min restraint period, a second blood sample

was taken from a fresh incision rostral to the first one, followed by placing the mouse back in

its home cage. A third blood sample was taken from a third incision rostral to the second one,
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90 min after the onset of restraint. Each blood sample was collected by using a dipotassium-

EDTA capillary blood collection system (Microvette CB 300 K2E, Sarstedt, Nümbrecht, Ger-

many). Immediately after sampling, the blood samples were placed on ice. Within 60 min, the

samples were centrifuged for 10 min at 4,000g and 4˚C. Plasma samples were transferred to

new, labeled microcentrifuge tubes and stored at −80˚C until assayed. Plasma concentrations

of corticosterone were determined by a commercial ELISA kit (EIA 4164, DRG Instruments

GmbH, Marburg, Germany) in duplicates according to the manufacturers’ instructions. Intra-

and inter-assay coefficients of variation were below 10% and 12%, respectively.

Oestrous cycle determination

The oestrous cycle stage was assessed by cytological analysis of vaginal smears to estimate the

sex hormone status of the female mice. Vaginal smears were taken immediately after testing

and postmortem after killing. Briefly, after each test, the female was placed on the cage lid with

its hind end towards the experimenter. The rounded tip of a disposable pipette with 50 μl of

sterile distilled water was gently placed at the opening of the vaginal canal, and vaginal smear

cells were collected by lavage. Smears were placed on microscopic slides, allowed to dry,

stained with 0.1% crystal violet solution, washed, and then analysed using light microscopy.

The stage of the oestrous cycle was determined based on the relative ratio of nucleated epithe-

lial cells, cornified squamous epithelial cells, and leukocytes. Since there were uneven distribu-

tions of oestrous cycle stages across groups on any given testing day [123], the vaginal smears

data were combined into high-oestrogen state (proestrus, dioestrus-proestrus transition, and

proestrus-oestrus transition) and low-oestrogen state (dioestrus, oestrus, metoestrus, oestrus-

metoestrus transition, and metoestrus/dioestrus transition) and were included in the analysis

as a linear binary factor.

Statistical analysis of behavioural and physiological responses

All statistical analyses were performed using the statistical software R (version 3.6.2). A

detailed R script is available as a supporting file. Data of male and female animals were ana-

lysed separately. Statistical tests and models employed for each analysis together with informa-

tion on fixed and random factors are reported in S4–S9 Tables.

In brief, linear models without interaction terms and with identity link function were run for

the body weight data collected at TP1 (i.e., right before killing within each RF; n = 6 mice per

rearing lab and sex; sample size was limited by the minimal number of cages with 3 mice per

sex and RF) and for plasma corticosterone levels measured in the SRT (n = 12 mice per RF and

sex). Linear mixed models without interaction terms and with identity link function were run

for body weight data and for relative adrenal weights (n = 24 per RF and sex) collected at TP2.

Satterthwaite approximation was used for determination of p-values in the mixed models.

A Dunn–Sidak Bonferroni correction method was applied to correct for multiple testing

where necessary. For the physiological measures, such as body weight and plasma corticoste-

rone levels, the threshold was set to α0 = 1 − (1 − 0.05)1/3 = 0.0169.

The distribution of the observed values for behavioural outcomes was inspected for devia-

tions from normality with Q–Q plots. The data set of the physiological measures (body

weights, relative adrenal weights, and corticosterone responses in the SRT) were normally dis-

tributed (S10–S12 Figs). Due to skewed distributions, transformations of behavioural data

were necessary for 7 variables (S12 Fig). In the male cohort, OF latency, LDB latency, and LDB

time in the light of males were square root transformed (S13A Fig). In the female cohort, OF

distance was log transformed, OF time in the centre, OF latency, and LDB time in the light

were square root transformed, while LDB latency was arcsine transformed (S13B Fig).
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For the analysis of behavioural outcomes, we used a MANOVA without nesting and inter-

action terms and with identity link function. To check for correlation between recorded vari-

ables, we calculated Pearson’s product moment correlation coefficient. We first excluded

variables that were highly correlated (S12 Table), which resulted in the final list of 6 dependent

behavioural variables (OF distance, OF time centre, OF latency, LDB time light, LDB entries

into light, and LDB latency). Pillai’s Trace was used to evaluate the MANOVA differences,

while the robustness of the findings was confirmed by 3 other test statistics: the Wilk’s

Lambda, Hotelling–Lawley Trace, and Roy’s Largest Root.

Multivariate outliers were identified by using the squared Mahalanobis distance (mvoutlier.

CoDA version 2.0.9; [124]). The analysis suggested the existence of 6 outliers in the male

cohort and 6 in the female cohort; S14 Fig), which were not removed for the further analysis.

To investigate whether the outliers had an impact on the results, we rerun the analysis with the

outliers removed and could confirm that results were not markedly different.

ATAC-seq analysis on purified neuronal nuclei

Nuclei isolation and fluorescence-activated nuclei sorting (FANS). The ATAC-seq analysis

was performed on ventral hippocampi isolated from male mice at TP1 (PND 56) and TP2 (PND

102). For this, test-naïve male mice were used to avoid effects of testing on the chromatin profile.

Five cages per RF were selected randomly from all cages containing 3 male littermates after wean-

ing. One mouse from the selected cages was killed in the RF at TP1 (total n = 25, i.e., 5 biological

replicates per rearing laboratory), while its test-naïve littermate was killed in the testing laboratory

at the end of the experiment (TP2; total n = 25, i.e., 5 biological replicates per RF).

The analysis has been restricted to males because they showed the most pronounced pheno-

typic differences in behaviour. Furthermore, in the female cohort, we would not be able to dis-

tinguish between the differences in chromatin organisation induced by hormonal fluctuations

[125] and differences induced by differential rearing environments.

Total nuclei isolation and purification of neuronal nuclei were performed as described else-

where [125,126] with slight modifications. In brief, the ventral hippocampus was dissected

from one side of the brain at −20˚C, cut into small pieces, and stored in Eppendorf DNA

LoBind 2 mL tubes at −80˚C until nuclei preparation. Nuclei preparation and sorting was per-

formed in 5 batches per each TP, with each batch having exactly 1 sample from each facility in

random order.

To obtain fresh nuclei, frozen tissue samples were resuspended in 4 ml of tissue lysis buffer

(0.32 M Sucrose, 5 mM CaCl2, 3 mM Mg(CH3COO)2, 0.1 mM EDTA, 10 mM Tris-HCl (pH

8), 1 mM DTT, 0.1% Triton X-100) and dissociated by 30 strokes of pestle A (loose pestle) and

then 20 strokes of pestle B (tight pestle) in a glass douncer (7 ml Dounce tissue grinder set,

KIMBLE, DWK Life Sciences). The lysate was transferred to an ultracentrifuge tube, followed

by adding 6 ml of sucrose buffer (1.8 M Sucrose, 3 mM Mg(CH3COO)2, 1 mM DTT, 10 mM

Tris-HCl (pH 8)) underlaid beneath the solution. The samples were then spun at 171,192.8×g
in a Hitachi Ultracentrifuge (CP100NX; with Sorvall TH-641 swing bucket rotor) for 1 h at

4˚C. Next, the nuclei pellet was resuspended with 500 μl of 0.1% BSA in DPBS with glucose,

sodium pyruvate, calcium, and magnesium. The nuclei solution was then incubated with

monoclonal antibody against neuronal marker NeuN conjugated to AlexaFluor 488 (1:1,000;

Merk Millipore, MAB377X) for 1 h at 4˚C on rotation protected from light. After incubation,

DAPI (1:1,000; Thermo Fisher Scientific, 62248) was added to the reaction. The nuclei suspen-

sion was immediately taken to be processed on a FACSAria instrument (BD Biosciences,

USA) at the Flow Cytometry and Cell Sorting Core Facility (FCCS CF) of the Department for

BioMedical Research, University of Bern.
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Prior to sorting, samples were filtered through a 35-μm cell strainer. To set up the gating

protocol, we used 4 controls: (i) unstained nuclei only; (ii) DAPI only; (iii) IgG1 isotype con-

trol-AlexaFluor 488 and DAPI; and (iv) NeuN-AlexaFluor 488 only; in addition to a sample

containing NeuN-AlexaFluor 488 and DAPI stain (S15 Fig), which allowed us to eliminate

debris and any clumped nuclei effectively, resulting in an apparent separation of the NeuN +

(neuronal) nuclei populations. From each individual ventral hippocampus, we collected

80,000 NeuN+ (neuronal) nuclei in BSA-precoated tubes filled with 200 μL of DPBS. The

purity of the sorted nuclei was confirmed by resorting a small fraction of NeuN+ nuclei using

the same protocol (showed more than 98% purity).

Transposition reaction, ATAC-seq libraries preparation, and sequencing. ATAC-seq

was performed according to Buenrostro and colleagues [56], with some modifications. Follow-

ing FANS, neuronal nuclei from the ventral hippocampus were spun down (2,900×g, 10 min

at 4˚C). The supernatant was carefully removed, avoiding the visible nuclei pellet. The nuclei

pellet was resuspended in 50 μl of the transposase reaction mix including 25 μL 2×TD reaction

buffer and 3 μl Tn5 Transposase, (Illumina Tagment DNA TDE1 Enzyme and Buffer Kits,

2003419) and 22 μl of nuclease free water (NFW; Ambion, AM9937). The transposition reac-

tion was performed at 37˚C for 30 min in a thermomixer with 500 RPM mixing, followed by

purification using a MinElute PCR Purification Kit (Qiagen, 28004). The purified, transposed

DNA was eluted in 10 μl of EB elution buffer and stored at −20˚C until amplification.

To amplify transposed DNA fragments, the following procedure was performed in 2

batches of 25 samples (1 batch per each TP) with equal group distribution (n = 5 samples from

each RF). For indexing and amplification of transposed DNA, we combined the following for

each sample: 10 μl transposed DNA, 25 μl NEBNext High-Fidelity 2× PCR Master Mix (New

England Biolabs, M0541S), 9 μl of unique, dual-indexed primer (IDT for Illumina Nextera

DNA UD Indexes; 20026930), and 6 μl of NFW (Ambion, AM9937). The PCR reaction was

carried out using the following conditions: 1 cycle of 72˚C for 5 min and 98˚C for 30 s, fol-

lowed by 5 cycles of 98˚C for 10 s, 63˚C for 30 s, and 72˚C for 1 min, and a hold step at 4˚C.

We then performed a qPCR side reaction to manually assess the amplification profiles and

determine the required number of additional PCR cycles [127]. The reaction mix was prepared by

combining 5 μL of a previously PCR-amplified DNA with, 7.5 μl of SYBR Green PCR Master Mix

(Applied Biosystems, 4344463), and 2.5 μl of NFW, and cycling conditions were set as follows: 1

cycle of 98˚C for 30 s, followed by 20 cycles of 98˚C for 10 s, 63˚C for 30 s, and 72˚C for 1 min.

Under our experimental conditions, 2 to 4 PCR cycles were added to the initial set of 5 cycles. The

amplified libraries were purified using MinElute PCR Purification Kit (Qiagen, 28004) and eluted

in 20 μL of the EB elution buffer. Library quality was monitored using the Advanced Analytics

Fragment Analyzer CE12 (Agilent, USA; S15 Fig), and the concentration was determined by

Qubit HS DNA kit (Life Technologies, Q32851) and quantitative PCR with the library quantifica-

tion kit from Bioline Jet Set Library Quantification Kit LoROX (Meridian Bioscience, BIO-68029).

A total of 50 ATAC-seq libraries was sequenced in 2 batches with equal group distribution

(25 libraries/batch/NovaSeq S1 Flow Cell; n = 5 per each rearing laboratory) on the Illumina

NovaSeq 6000 instrument with 2 × 100 bp pair-end protocol at the Next Generation Sequenc-

ing (NGS) Core Platform of the University of Bern.

ATAC-seq data analysis. Sequencing reads were trimmed and quality checked with fastp

(version 0.20.1; [128]) with CTGTCTCTTATACACATCT as adapter sequence and a minimal

read length of 30 bp. Reads were aligned to the mouse reference genome (ensembl build 102)

with Bowtie2 in paired end mode (version 2.3.5.1; [129]) keeping only concordant and unique

alignments.

Duplicate read pairs were marked using theMarkDuplicates command from the Picard

software suite (version 1.140; broadinstitute.github.io/picard/). Peaks were then called in each
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sample separately with MACS2 (version 2.1.4, with the parameters -f BAMPE -g mm—nomodel
-q 0.05—broad—broad-cutoff 0.1—keep-dup all) as previously reported [130]. For each TP and

RF, peaks were intersected with multovl (version 1.3; [131] and only peaks found in at least 3

samples per group (i.e., rearing laboratory) were kept (S16 Fig). Finally, peaks from all groups

were merged with multovl (union of all peaks within groups). The number of reads within

peak intervals was obtained with featureCounts (version 2.0.1; [132]) with the parameters—

primary—ignoreDup—minOverlap 30. The peak set was further used to build a distance matrix

using the aligned reads of the individual samples per each TP. The sample correlation matrices

were generated for by using all sites and 10% of the most variable sites and visualised by corre-

lation heatmaps, PCA, and t-SNE distance plots. Within each sample, the most and least acces-

sible sites were defined as the peaks with the 2.5% highest and 2.5% lowest sequence counts.

Sites from all samples and TPs were merged to generate the heatmap shown in Fig 3C.

The distance matrix was also used as an input for the PERMANOVA. By using PERMA-

NOVA (function adonis() from the R-package vegan version 2.5–7 [133], we tested whether

and to what extent the variation between samples can be explained by the RF within each TP.

Since the test was based on 9,999 permutations, the lowest possible p-value was set to

“<0.0001” instead of “0”.

Variation in read counts was analysed with a general linear model in R (version 3.6.1) with

the package DESeq2 (version 1.24.0; [134]) according to a factorial design with the 2 explana-

tory factors “RF” and “processing batch”, within each TP. For the annotation of peaks, we used

the ChiPseeker annotation for the plot with genomic features and the Homer annotation for

TSS distance and candidate, protein coding, genes. Following specific conditions were com-

pared with linear contrasts: (i) one-to-one (oto) comparison of each pair of laboratories (RF1

versus RF2, RF1 versus RF3, etc.) for each TP; (ii) one-to-many (otm) comparison of 1 labora-

tory to all other laboratories for each TP (RF1 versus all other RFs, RF2 versus all other RFs,

etc.); and (iii) a global test for the factor “RF” (LRT_RF), i.e., do different rearing laboratories

differ in general.

Within each comparison, p-values were adjusted for multiple testing (Benjamini–Hoch-

berg), and regions with an adjusted p-value (false discovery rate (FDR)) below 0.01 and a mini-

mal log2 fold-change (i.e., the difference between the log2-transformed, normalised sequence

counts) of 0.5 were considered to be differentially accessible. Normalised sequence counts

were calculated accordingly with DESeq2 and log2 (x + 1) transformed. GO and KEGG path-

way analyses were performed on the significant peaks located 2 kb up- and downstream of the

transcriptional start site. Functional annotation for enrichment of GO terms was performed

using topGO (version 2.28; [135]) in conjunction with the GO annotation from Ensembl avail-

able through biomaRt [136]. Analysis was based on gene counts using the “weight” algorithm

with Fisher’s exact test (both implemented in topGO). Only GO terms with more than 5 genes

were tested, and terms were identified as significant if the p-value was below 0.05. Enrichment

of KEGG pathways in gene sets was tested with clusterProfiler (version 3.12.0; [137]) using the

gene to pathway mappings available through biomaRt [136] and the package org.Rn.eg.db

(version 3.8.2; [138]). Integrative Genome Viewer (IGV, version 2.8.9) was used to visualise

and extract representative ATAC-seq tracks.

Supporting information

S1 Table. Detailed housing and husbandry conditions in each rearing facility (a) and test-

ing laboratory (b). https://doi.org/10.6084/m9.figshare.21088783.

(XLSX)
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S2 Table. ANOVA results for the effect of rearing facility (RF) and time point (TP) on α-

diversity for males and females separately.

(PDF)

S3 Table. PERMANOVA partitioning variation in microbiome microbial community com-

position (β-diversity) between rearing facilities (RF), for each time point (TP) and sex sep-

arately.

(PDF)

S4 Table. Phenotypic variation in body weight of mice is induced by common differences

between the rearing conditions in different facilities. The effect of rearing environment on

body weight was evaluated at 3 TPs throughout the study: right before killing within each RF

(PND 56; TP1), after the acclimatisation period in the testing facility (PND 75), and at the end

of the experiment (PND 102; TP2). Linear models were used to analyse data collected on

mouse body weight at PND 56 (TP1) within each RF for males and females (a). RF, litter size,

and sex ratio at weaning were used as predictor variables. Linear mixed effect models with the

same list of predictor variables as fixed effects were used for the body weight data collected in

the testing facility for males and females (b). Cage identification number (cage ID) in the test-

ing facility was used as a random factor. (a) Linear regression model outcomes for body weight

data collected in each RF; (b) Linear mixed effect model with type III ANOVA with Sat-

terthwaite’s approximation for body weight data collected at the testing facility. PND, postnatal

day; RF, rearing facility; TP, time point.

(PDF)

S5 Table. Phenotypic variation in behavior of mice is modified by common differences

between the rearing conditions in different facilities. MANOVA outcomes and statistics for

males and females. The RF was defined as a main independent (predictor) variable. Additional

covariates were included in the model based on the published evidence, which suggests that

they might affect behavioral phenotype. List of the nuisance variables includes: litter size at

weaning [1,2], sex ratio at weaning [3,4], and number of cage mates after weaning [5]. In addi-

tion, we included the stage of oestrous cycle at the time of testing (OF ECS and LDB ECS) in

females, because of its effects on behaviour [6–8]. The results were confirmed by comparing

the Pillai’s Trace outcome with outcomes of 3 different test statistics. The proportion of varia-

tion in behaviour of mice, which is solely attributed to differences in rearing environments,

was calculated by dividing the Pillai’s trace by the degrees of freedom. MANOVA outcomes

and statistics for behavioural parameters. LDB, light–dark box; MANOVA, multivariate analy-

sis of variance; OF, open field; RF, rearing facility.

(PDF)

S6 Table. Loadings of an LDA for male and female behaviour. The rearing facility was

defined as a grouping variable, while the 6 behavioral measures served as predictor variables.

(OF = open field test, LDB = light–dark box test).

(PDF)

S7 Table. Classification based on LDA of behaviour of males and females.

(PDF)

S8 Table. Phenotypic differences of the HPA stress profile in mice cannot be explained by

common differences between the rearing conditions in different facilities. Statistical out-

comes of plasma corticosterone measures for males and females. We applied linear models,

with the covariates rearing facility, litter size at weaning, sex ratio at weaning, and number of

cage mates after weaning. In females, the stage of oestrous cycle on the testing day was also
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included, and data were grouped into high- and low-oestrogen state.

(PDF)

S9 Table. Phenotypic variation in relative adrenal weight of mice is induced by common

differences between the rearing conditions in different facilities. Statistical outcomes for rel-

ative adrenal gland weight data collected at the testing laboratory (TP1; PND 56) for males and

females. Linear mixed effect models were used with rearing facility, litter size at weaning, sex

ratio at weaning, and number of cage mates after weaning as fixed effect, while the cage ID in

the testing facility was defined as a random factor. Linear mixed effect model with type III

ANOVA with Satterthwaite’s approximation for relative adrenal gland weight for males.

(PDF)

S10 Table. PERMANOVA partitioning variation in chromatin accessibility profile

between rearing facilities and processing batches. Manhattan distance between all samples

was used as input.

(PDF)

S11 Table. The litter size, the litter sex ratio, and number of pups weaned from each litter

across rearing facilities.

(PDF)

S12 Table. Pearson product moment correlations for behavioural measures for males (a)

and females (b). Several highly correlated variables were removed before a multivariate

analysis. Only variables with moderated correlations amongst each other were used. (a)

Pearson product moment correlations for behavioural measures for males. Mean absolute cor-

relation coefficient for males was 0.20. (b) Pearson product moment correlations for beha-

vioural measures for females. Mean absolute correlation coefficient for females: 0.29.

(PDF)

S1 Fig. Timeline of the study. BT mice, mice used for behavioural testing; GD, gestational

day; LDB, light–dark box test; MA mice, mice that were not behaviourally tested and used for

chromatin profiling and gut microbiome composition analysis; OF, open field test; PND, post-

natal day; SRT,: stress reactivity test; TP, time point.

(PDF)

S2 Fig. Diet suppliers: Differentially abundant taxa. (a) Dendrogram representing relation-

ship between samples from mice at TP1 following hierarchical clustering (average linkage).

Horizontal bars below the dendrogram represent sample identity in relation to rearing facility

(first bar) or diet supplier (second bar). (b) Mean abundance of amplicon sequence variants

(ASVs) identified as differentially abundant between the 2 diet suppliers aggregated by phylum

(left) and order (right). Significance symbols represent results from Wilcoxon paired-rank test.

The raw data underlying this figure are available in the Figshare repository https://doi.org/10.

6084/m9.figshare.21087688. The 16S rRNA gene sequencing data are available from the Euro-

pean Nucleotide Archive (ENA) under accession number PRJEB49361.

(PDF)

S3 Fig. Oestrous cycle–dependent effects on behavioral phenotype in female mice from dif-

ferent rearing facilities. Results of the open field (a, b) and light-dark box (c) tests are pre-

sented in females depending on the oestrous cycle stage determined immediately after

behavioral testing. There was a significant effect of oestrogen status on time spent in the centre

(b) and time spent in the light compartment (c) with high-oestrogenic females showing mar-

ginally higher activity than low-oestrogenic females. The raw data underlying this figure are
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available in the Figshare repository https://doi.org/10.6084/m9.figshare.21087718.

(PDF)

S4 Fig. Oestrous cycle–dependent effects on basal corticosterone levels in female mice

from different rearing facilities. Results are presented depending on the oestrous cycle stage

determined after HPA reactivity tests. There was a significant effect of oestrogen status on

basal corticosterone levels, with high-oestrogenic females showing lower basal corticosterone

levels than low estrogenic females. The raw data underlying this figure are available in the Fig-

share repository https://doi.org/10.6084/m9.figshare.21087799.

(PDF)

S5 Fig. Neuronal chromatin accessibility differs in males from different rearing facilities.

(a) PCoA of the ATAC-seq data. (b) Manhatten distances between samples for closed chroma-

tin sites visualised by t-SNE. (c) The number of significant differentially accessible peaks asso-

ciated to each of rearing environments in a given TP (one-to-many comparison; adjusted for

multiple testing FDR < 0.01 and abs(logFC) > 0.5. (d) The number of significant differentially

accessible peaks between groups in a given TP (one-to-one comparison; adjusted for multiple

testing FDR < 0.01 and abs(logFC) > 0.5). (e) Chromatin accessibility profiles of the Col19a1,

Dlg 2, Fzd9, and Lrrc4c. Shown are genomic coordinates of differential ATAC-seq peaks. The

raw data underlying this figure are available from the NCBI GEO database under accession

number GSE191125. The analysis script is available at the GitHub repository https://github.

com/MWSchmid/Jaric-et-al.-2022. ATACAU : AbbreviationlistshavebeencompiledforthoseusedinS4andS5Tables; S5andS8Figs; andS3andS4Data:Pleaseverifythatallentriesarecorrect:-seq, assay for transposase-accessible chromatin

using sequencing; Dlg 2, discs large homolog 2; FDR, false discovery rate; Fzd9, Frizzled9;

GEO, Gene Expression Omnibus; Lrrc4c, Leucine-Rich Repeat-Containing 4C; PCoA, princi-

pal coordinate analysis; TP, time point.

(PDF)

S6 Fig. Weaning strategy. Each pup from a litter is sexed, weighed, and placed in a separate

cage/container. After all animals from the litter are checked, it resulted in X number of sepa-

rate cages/containers with males and Y number of separate cages/containers with females. If

the number of males/females in a litter is 1, the animal is not weaned (female in Litter 1); if the

number of males/females is 2 or 3, they are all weaned into same sex groups and taken to the

housing room (Litter 2 and males in Litter 3); and if the number of males/females is >3, the 3

animals to be housed together are chosen using a random number generator (males in Litter 1

and females in Litter 3). Unweaned pups (female in Litter 1), extra pups, and dams were killed

after the pups have been weaned.

(PDF)

S7 Fig. Random down-sampling of 16S sequencing reads. (a) Histogram of individual library

sizes. (b) Example rarefaction plots of 8 randomly selected samples. The red line indicates rare-

faction depth. The raw data underlying this figure are available in the Figshare repository

https://doi.org/10.6084/m9.figshare.21087877. The 16S rRNA gene sequencing data are avail-

able from the European Nucleotide Archive (ENA) under accession number PRJEB49361.

(PDF)

S8 Fig. Evaluation of differences in microbiome between samples from behaviorally tested

BT mice and mice used for chromatin profiling MA mice. (a) Mean values for α-diversity

metrics for MA mice and BT mice. Top left: Chao1 richness; bottom left: observed species rich-

ness; top right: Pielou evenness, bottom right: Shannon diversity index. (b) Results of Wil-

coxon signed-rank test for each α-diversity metric between MA and BT mice. (c) Ordination

plot visualizing PCoA based on Bray–Curtis dissimilarity between samples from MA and BT
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mice collected at TP2. (d) Result of PERMANOVA partitioning variation in microbiome com-

position between mice used for MA and BT. The raw data underlying this figure are available

in the Figshare repository https://doi.org/10.6084/m9.figshare.21087931. The 16S rRNA gene

sequencing data are available from the ENA under accession number PRJEB49361. ENA,

European Nucleotide Archive; PCoA, principal coordinate analysis; PERMANOVA, permuta-

tional analysis of variance.

(PDF)

S9 Fig. Power analysis. Power curve for a one-way ANOVA with α = 0.05, k = 5 rearing facili-

ties and n = 6 to 30 subjects, assuming an average means difference between 2 randomly cho-

sen labs of 10% (blue), 20% (orange), or 30% (green). Power estimates are based on 10,000

repeated samples. To generate differences between labs we sampled distribution means from a

normal distribution with the reported mean (10,000 square units) and standard deviation of

890, 1,780, and 2,260 square units, which resulted in samples, where the difference in the effect

size between 2 randomly chosen labs was on average 10%, 20%, or 30%. The numerical data

and code underlying this figure are available in the Figshare repository https://doi.org/10.

6084/m9.figshare.21087931.

(PDF)

S10 Fig. Q–Q (quantile–quantile) a probability plots for the body weight data points. The

data points of the body weights were normally distributed both in males (top panel) and

females (bottom panel). The underlying numerical data are available in Fig 2 Data (Fig 2A

MALES; Fig 2A FEMALES) in the Figshare repository https://doi.org/10.6084/m9.figshare.

21081949.

(PDF)

S11 Fig. Q–Q (quantile–quantile) a probability plots for the corticosterone response data

points in the stress reactivity tests. The data points of the corticosterone response were nor-

mally distributed both in males (top panel) and females (bottom panel). The underlying

numerical data are available in Fig 2 Data (Fig 2C MALES; Fig 2C FEMALES) in the Figshare

repository https://doi.org/10.6084/m9.figshare.21081949.

(PDF)

S12 Fig. Q–Q (quantile–quantile) a probability plots for the relative adrenal gland weight

at TP2. The data points of the relative adrenal gland weights were normally distributed both

in males (left plot) and females (right plot). The underlying numerical data are available in Fig

2 Data (Fig 2D MALES; Fig 2D FEMALES) in the Figshare repository https://doi.org/10.6084/

m9.figshare.21081949.

(PDF)

S13 Fig. Q–Q (quantile–quantile) a probability plots for the behavioral data sets. Q–Q

plots are presented before and after transformation of individual data points for both males (a)

and (b) females. The underlying numerical data are available in Fig 2 Data (Fig 2B MALES;

Fig 2B FEMALES) in the Figshare repository https://doi.org/10.6084/m9.figshare.21081949.

(PDF)

S14 Fig. Multivariate outliers. Results of the test for multivariate outliers indicated the exis-

tence of 3 outliers in males (a) and 3 outliers in the female data (b). Outliers are shown in red.

The underlying numerical data are available in Fig 2 Data (Fig 2B MALES; Fig 2B FEMALES)

in the Figshare repository https://doi.org/10.6084/m9.figshare.21081949.

(PDF)
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S15 Fig. Gating strategy for separation of neuronal nuclei using fluorescence-activated

nuclei sorting (FANS). Sorting plots from 3 negative controls (nuclei only, DAPI only, and

Isotype control + DAPI) processed without primary antibody (neuron-specific marker NeuN),

positive control containing NeuN antibody conjugated with Alexa 488 only (NeuN-Alexa 488

only control) and our sample processed with NeuN-Alexa 488 antibody and DAPI are shown.

Representative FANS reports showing the gating strategy for the checking the size and granu-

larity, removal of debris, and ensuring a successful separation of NeuN+ (neuronal) from non-

neuronal single nuclei.

(PDF)

S16 Fig. ATAC-seq library quality control. The quality control of ATAC-seq libraries was

performed by using Fragment Analyzer (FA). The representative FA trace with nucleosomal

banding pattern is shown.

(PDF)

S17 Fig. ATAC peak count statistics. The number of peaks drops quite strongly with the min-

imal number of samples required for merging peaks. (a) Representative scatter plots showing

log2 (x + 1) transformed, normalised values averaged in RF1 and RF2 at TP1. (b) Only high-

confidence broad peaks, shared across at least 3 biological replicates of 1 group are used for all

downstream analyses. The raw data underlying this figure are available from the NCBI Gene

Expression Omnibus (GEO) database under accession number GSE191125. The analysis script

is available at the GitHub repository https://github.com/MWSchmid/Jaric-et-al.-2022.

(PDF)

S1 Data. Differentially abundant amplicon sequence variants (ASVs) between the 2 diet

suppliers. The 16S rRNA gene sequencing data are available from the European Nucleotide

Archive (ENA) under accession number PRJEB49361. The supporting data are available at the

Figshare repository https://doi.org/10.6084/m9.figshare.21088432.

(XLSX)

S2 Data. Significant peaks and the gene annotations for TP1 (a) and TP2 (b). The ATAC-

seq data are available from the NCBI Gene Expression Omnibus (GEO) database under acces-

sion number GSE191125. The analysis script is available at the GitHub repository https://

github.com/MWSchmid/Jaric-et-al.-2022. The supporting data are available at the Figshare

repository https://doi.org/10.6084/m9.figshare.21088489.

(XLSX)

S3 Data. Gene Ontology (GO). (a) BP terms, which differ between rearing laboratories at

TP1_one to one (oto) comparison; (b) BP terms, which differ between rearing laboratories at

TP2_one to one (oto) comparison; (c) CC; terms that differ between rearing laboratories at

TP1_one-to-one (oto) comparison; (d) CC; terms that differ between rearing laboratories at

TP2_one-to-one (oto) comparison; (e) MF; terms that differ between rearing laboratories at

TP1_one-to-one (oto) comparison; (f) MF; terms that differ between rearing laboratories at

TP2_one-to-one (oto) comparison. The ATAC-seq data are available from the NCBI GEO

database under accession number GSE191125. The analysis script is available at the GitHub

repository https://github.com/MWSchmid/Jaric-et-al.-2022. The supporting data are available

at the Figshare repository https://doi.org/10.6084/m9.figshare.21088504. ATAC-seq, assay for

transposase-accessible chromatin using sequencing; BP, Biological Process; CC, cellular com-

ponents; GEO, Gene Expression Omnibus; MF, molecular function.

(XLSX)
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S4 Data. KEGG pathways. (a) KEGG pathways, which differ significantly in abundance

between rearing facilities at TP1_one-to-one (oto) comparison; (b) KEGG pathways, which

differ significantly in abundance between rearing facilities at TP2_one-to-one (oto) compari-

son. The ATAC-seq data are available from the NCBI GEO database under accession number

GSE191125. The analysis script is available at the GitHub repository https://github.com/

MWSchmid/Jaric-et-al.-2022. The supporting data are available at the Figshare repository

https://doi.org/10.6084/m9.figshare.21088564. ATAC-seq, assay for transposase-accessible

chromatin using sequencing; GEO, Gene Expression Omnibus; KEGG, Kyoto Encyclopedia of

Genes and Genomes.

(XLSX)

S1 Text. Sample size, Data exclusion, Replication, Randomisation, Blinding, ATAC-Seq

Data deposition.

(PDF)
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uela Buettner, André Bleich, Irmgard Amrein, David P. Wolfer, Chadi Touma, Shinichi

Sunagawa, Hanno Würbel.

PLOS BIOLOGY Rearing environment modulates mouse phenotype

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001837 October 21, 2022 26 / 33

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001837.s033
https://github.com/MWSchmid/Jaric-et-al.-2022
https://github.com/MWSchmid/Jaric-et-al.-2022
https://doi.org/10.6084/m9.figshare.21088564
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001837.s034
https://doi.org/10.1371/journal.pbio.3001837


References
1. Agassi J. The Very Idea of Modern Science [Internet]. Dordrecht: Springer Netherlands; 2013 [cited

2021 Sep 12]. Available from: http://link.springer.com/10.1007/978-94-007-5351-8

2. MunafòMR, Nosek BA, Bishop DVM, Button KS, Chambers CD, Percie du Sert N, et al. A manifesto

for reproducible science. Nat. Hum Behav. 2017 Jan; 1(1):0021. https://doi.org/10.1038/s41562-016-

0021 PMID: 33954258

3. Ioannidis JPA. Why Most Published Research Findings Are False. PLoS Med. 2005 Aug 30; 2(8):

e124. https://doi.org/10.1371/journal.pmed.0020124 PMID: 16060722

4. Freedman LP, Cockburn IM, Simcoe TS. The Economics of Reproducibility in Preclinical Research.

PLoS Biol. 2015 Jun 9; 13(6):e1002165. https://doi.org/10.1371/journal.pbio.1002165 PMID:

26057340

5. Begley CG, Ioannidis JPA. Reproducibility in Science: Improving the Standard for Basic and Preclini-

cal Research. Circ Res. 2015 Jan 2; 116(1):116–126. https://doi.org/10.1161/CIRCRESAHA.114.

303819 PMID: 25552691

6. Prinz F, Schlange T, Asadullah K. Believe it or not: how much can we rely on published data on poten-

tial drug targets? Nat Rev Drug Discov. 2011 Aug 31; 10(9):712. https://doi.org/10.1038/nrd3439-c1

PMID: 21892149

7. Bishop D. Rein in the four horsemen of irreproducibility. Nature. 2019 Apr; 568(7753):435–435.

https://doi.org/10.1038/d41586-019-01307-2 PMID: 31019328

8. Loken E, Gelman A. Measurement error and the replication crisis. Science. 2017 Feb 10; 355

(6325):584–5. https://doi.org/10.1126/science.aal3618 PMID: 28183939

9. Freedman L, Gibson M. The Impact of Preclinical Irreproducibility on Drug Development. Clin Pharma-

col Ther. 2015 Jan; 97(1):16–8. https://doi.org/10.1002/cpt.9 PMID: 25670378

10. Ioannidis JPA, Fanelli D, Dunne DD, Goodman SN. Meta-research: Evaluation and Improvement of

Research Methods and Practices. PLoS Biol. 2015 Oct 2; 13(10):e1002264. https://doi.org/10.1371/

journal.pbio.1002264 PMID: 26431313

11. Goodman SN, Fanelli D, Ioannidis JPA. What does research reproducibility mean? Sci Transl Med

[Internet]. 2016 Jun [cited 2022 May 7]; 8(341). Available from: https://www.science.org/doi/10.1126/

scitranslmed.aaf5027 PMID: 27252173

12. Klingenberg CP. Phenotypic Plasticity, Developmental Instability, and Robustness: The Concepts and

How They Are Connected. Front Ecol Evol. 2019 Mar 7; 7:56.

13. Voelkl B, Altman NS, Forsman A, Forstmeier W, Gurevitch J, Jaric I, et al. Reproducibility of animal

research in light of biological variation. Nat Rev Neurosci. 2020 Jul 15; 21(7):384–93. https://doi.org/

10.1038/s41583-020-0313-3 PMID: 32488205

14. von Kortzfleisch VT, Karp NA, Palme R, Kaiser S, Sachser N, Richter SH. Improving reproducibility in

animal research by splitting the study population into several ‘mini-experiments.’ Sci Rep. 2020 Dec;

10(1):16579.

15. Farrar BG, Voudouris K, Clayton NS. Replications, Comparisons, Sampling and the Problem of Repre-

sentativeness in Animal Cognition Research. Anim Behav Cogn. 2021 May 1; 8(2):273–95. https://doi.

org/10.26451/abc.08.02.14.2021 PMID: 34046521

16. Martin LB, Hanson HE, Hauber ME, Ghalambor CK. Genes, Environments, and Phenotypic Plasticity

in Immunology. Trends in Immunology. 2021 Mar; 42(3):198–208. https://doi.org/10.1016/j.it.2021.01.

002 PMID: 33518415

17. Karp NA, Fry D. What is the optimum design for my animal experiment? BMJ Open Sci. 2021 Mar; 5

(1):e100126. https://doi.org/10.1136/bmjos-2020-100126 PMID: 35047700

18. Desjardins E, Kurtz J, Kranke N, Lindeza A, Richter SH. Beyond Standardization: Improving External

Validity and Reproducibility in Experimental Evolution. BioScience. 2021 May 10; 71(5):543–52.

19. Pallocca G. On the usefulness of animals as a model system (part I): Overview of criteria and focus on

robustness. ALTEX. 2022:347–353. https://doi.org/10.14573/altex.2203291 PMID: 35413127

20. van der Goot MH, Kooij M, Stolte S, Baars A, Arndt SS, van Lith HA. Incorporating inter-individual vari-

ability in experimental design improves the quality of results of animal experiments. Orsini CA, editor.

PLoS ONE. 2021 Aug 5; 16(8):e0255521. https://doi.org/10.1371/journal.pone.0255521 PMID:

34351958

21. Usui T, Macleod MR, McCann SK, Senior AM, Nakagawa S. Meta-analysis of variation suggests that

embracing variability improves both replicability and generalizability in preclinical research. Boutron I,

editor. PLoS Biol. 2021 May 19; 19(5):e3001009. https://doi.org/10.1371/journal.pbio.3001009 PMID:

34010281

PLOS BIOLOGY Rearing environment modulates mouse phenotype

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001837 October 21, 2022 27 / 33

http://link.springer.com/10.1007/978-94-007-5351-8
https://doi.org/10.1038/s41562-016-0021
https://doi.org/10.1038/s41562-016-0021
http://www.ncbi.nlm.nih.gov/pubmed/33954258
https://doi.org/10.1371/journal.pmed.0020124
http://www.ncbi.nlm.nih.gov/pubmed/16060722
https://doi.org/10.1371/journal.pbio.1002165
http://www.ncbi.nlm.nih.gov/pubmed/26057340
https://doi.org/10.1161/CIRCRESAHA.114.303819
https://doi.org/10.1161/CIRCRESAHA.114.303819
http://www.ncbi.nlm.nih.gov/pubmed/25552691
https://doi.org/10.1038/nrd3439-c1
http://www.ncbi.nlm.nih.gov/pubmed/21892149
https://doi.org/10.1038/d41586-019-01307-2
http://www.ncbi.nlm.nih.gov/pubmed/31019328
https://doi.org/10.1126/science.aal3618
http://www.ncbi.nlm.nih.gov/pubmed/28183939
https://doi.org/10.1002/cpt.9
http://www.ncbi.nlm.nih.gov/pubmed/25670378
https://doi.org/10.1371/journal.pbio.1002264
https://doi.org/10.1371/journal.pbio.1002264
http://www.ncbi.nlm.nih.gov/pubmed/26431313
https://www.science.org/doi/10.1126/scitranslmed.aaf5027
https://www.science.org/doi/10.1126/scitranslmed.aaf5027
http://www.ncbi.nlm.nih.gov/pubmed/27252173
https://doi.org/10.1038/s41583-020-0313-3
https://doi.org/10.1038/s41583-020-0313-3
http://www.ncbi.nlm.nih.gov/pubmed/32488205
https://doi.org/10.26451/abc.08.02.14.2021
https://doi.org/10.26451/abc.08.02.14.2021
http://www.ncbi.nlm.nih.gov/pubmed/34046521
https://doi.org/10.1016/j.it.2021.01.002
https://doi.org/10.1016/j.it.2021.01.002
http://www.ncbi.nlm.nih.gov/pubmed/33518415
https://doi.org/10.1136/bmjos-2020-100126
http://www.ncbi.nlm.nih.gov/pubmed/35047700
https://doi.org/10.14573/altex.2203291
http://www.ncbi.nlm.nih.gov/pubmed/35413127
https://doi.org/10.1371/journal.pone.0255521
http://www.ncbi.nlm.nih.gov/pubmed/34351958
https://doi.org/10.1371/journal.pbio.3001009
http://www.ncbi.nlm.nih.gov/pubmed/34010281
https://doi.org/10.1371/journal.pbio.3001837
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