36 research outputs found

    Single cold atom as efficient stationary source of EPR-entangled light

    Get PDF
    The Stokes and anti-Stokes components of the spectrum of resonance fluorescence of a single trapped atom, which originate from the mechanical coupling between the scattered photons and the quantized motion of the atomic center of mass, exhibit quantum correlations which are of two-mode-squeezing type. We study and demonstrate the build-up of such correlations in a specific setup, which is experimentally accessible, and where the atom acts as efficient and continuous source of EPR-entangled, two-mode squeezed light

    Time-separated entangled light pulses from a single-atom emitter

    Full text link
    The controlled interaction between a single, trapped, laser-driven atom and the mode of a high-finesse optical cavity allows for the generation of temporally separated, entangled light pulses. Entanglement between the photon-number fluctuations of the pulses is created and mediated via the atomic center-of-mass motion, which is interfaced with light through the mechanical effect of atom-photon interaction. By means of a quantum noise analysis we determine the correlation matrix which characterizes the entanglement, as a function of the system parameters. The scheme is feasible in experimentally accessible parameter regimes. It may be easily extended to the generation of entangled pulses at different frequencies, even at vastly different wavelengths.Comment: 17 pages, 5 figures. Modified version, to appear in the New Journal of Physic

    Entanglement transfer from dissociated molecules to photons

    Get PDF
    We introduce and study the concept of a reversible transfer of the quantum state of two internally-translationally entangled fragments, formed by molecular dissociation, to a photon pair. The transfer is based on intracavity stimulated Raman adiabatic passage and it requires a combination of processes whose principles are well established.Comment: 5 pages, 3 figure

    Continuous variable entanglement and quantum state teleportation between optical and macroscopic vibrational modes through radiation pressure

    Full text link
    We study an isolated, perfectly reflecting, mirror illuminated by an intense laser pulse. We show that the resulting radiation pressure efficiently entangles a mirror vibrational mode with the two reflected optical sideband modes of the incident carrier beam. The entanglement of the resulting three-mode state is studied in detail and it is shown to be robust against the mirror mode temperature. We then show how this continuous variable entanglement can be profitably used to teleport an unknown quantum state of an optical mode onto the vibrational mode of the mirror.Comment: 18 pages, 10 figure

    Anomalous modes drive vortex dynamics in confined Bose-Einstein condensates

    Full text link
    The dynamics of vortices in trapped Bose-Einstein condensates are investigated both analytically and numerically. In axially symmetric traps, the critical rotation frequency for the metastability of an isolated vortex coincides with the largest vortex precession frequency (or anomalous mode) in the Bogoliubov excitation spectrum. As the condensate becomes more elongated, the number of anomalous modes increases. The largest frequency of these modes exceeds both the thermodynamic critical frequency and the nucleation frequency at which vortices are created dynamically. Thus, anomalous modes describe not only the critical rotation frequency for creation of the first vortex in an elongated condensate but also the vortex precession in a single-component spherical condensate.Comment: 4 pages revtex, 3 embedded figure

    Registered Ship Notes

    Get PDF
    https://digitalmaine.com/blue_hill_documents/1179/thumbnail.jp
    corecore