77 research outputs found

    Comparison of bioactive glass coated and hydroxyapatite coated titanium dental implants in the human jaw bone

    Get PDF
    Background: Current trends in clinical dental implant therapy include modification of titanium surfaces for the purpose of improving osseointegration by different additive (bioactive coatings) and subtractive processes (acid etching, grit-blasting). The aim of this study was to evaluate and compare the behaviour of hydroxyapatite and the newly developed bioactive glass coated implants (62 implants) in osseous tissue following implantation in 31 patients. Methods: Bioactive glass and hydroxyapatite was suitably coated on titanium alloy. Hydroxyapatite coating was applied on the implant surface by air microplasma spray technique and bioactive glass coating was applied by vitreous enamelling technique. The outcome was assessed up to 12 months after prosthetic loading using different clinical and radiological parameters. Results: Hydroxyapatite and bioactive glass coating materials were non-toxic and biocompatible. Overall results showed that bioactive glass coated implants were as equally successful as hydroxyapatite in achieving osseointegration and supporting final restorations. Conclusions: The newly developed bioactive glass is a good alternative coating material for dental implants

    Effect of fuel characteristics on synthesis of calcium hydroxyapatite by solution combustion route

    Get PDF
    The effect of fuel characteristics on the processing of nano sized calcium hydroxyapatite (HA) fine powders by the solution combustion technique is reported. Urea, glycine and glucose were used as fuels in this study. By using different combinations of urea and glycine fuels and occasional addition of small amounts of highly water-soluble glucose, the flame temperature (T (f)) of the process as well as product characteristics could be controlled easily. The powders obtained by this modified solution combustion technique were characterized by XRD, FTIR spectroscopy, SEM, FESEM-EDX, particle size analyser (PSD) and specific surface area (SSA) measurements. The particle size of phase pure HA powder was found to be 1) urea and glycine precursor batches were investigated separately

    Deposition and characterization of diamond-like nanocomposite coatings grown by plasma enhanced chemical vapour deposition over different substrate materials

    Get PDF
    Diamond-like nanocomposite (DLN) coatings have been deposited over different substrates used for biomedical applications by plasma-enhanced chemical vapour deposition (PECVD). DLN has an interconnecting network of amorphous hydrogenated carbon and quartz-like oxygenated silicon. Raman spectroscopy, Fourier transform-infra red (FT-IR) spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD) have been used for structural characterization. Typical DLN growth rate is about 1 m/h, measured by stylus profilometer. Due to the presence of quartz-like Si:O in the structure, it is found to have very good adhesive property with all the substrates. The adhesion strength found to be as high as 0 center dot 6 N on SS 316 L steel substrates by scratch testing method. The Young's modulus and hardness have found to be 132 GPa and 14 center dot 4 GPa, respectively. DLN coatings have wear factor in the order of 1 x 10 (-aEuro parts per thousand 7) mm (3) /N-m. This coating has found to be compatible with all important biomedical substrate materials and has successfully been deposited over Co-Cr alloy based knee implant of complex shape

    Acid resistant one coat enamel for power generation plants

    No full text
    A special vitreous enamel coating suitable for use in air preheater heating elements (waste heat recovery system) in boilers of thermal power plants has been developed. The preparation of coating materials, techniques of application, evaluation and characterization of the coating and prediction of life expectancy using a mathematical model based on Brandon's method have been reported

    A new high temperature resistant glass-ceramic coating developed in CGCRI, Kolkata

    No full text
    A new high temperature and abrasion resistant glass-ceramic coating system (based on MgO-Al2O3-TiO2 and ZnO-Al2O3-SiO2 based glass systems) for gas turbine engine components has been developed. Thermal shock resistance, adherence at 90°-bend test, static oxidation resistance at the required working temperature 1000°C for continuous service, and abrasion resistance are evaluated using suitable standard methods. The coating materials and the resultant coatings are characterized using differential thermal analysis, differential thermo-gravimetric analysis, X-ray diffraction analysis, optical microscopy and scanning electron microscopy. The properties evaluated clearly showed the suitability of these coatings for protection of different hot zone components in different types of engines. XRD analysis of the coating materials and the resultant coatings showed presence of a number of microcrystalline phases. SEM photographs indicated strong chemical bonding at the metal-ceramic interface. Optical micrographs showed smooth glossy impervious defect free surface finish

    A new high temperature resistant glass-ceramic coating for gas turbine engine components

    No full text
    A new high temperature and abrasion resistant glass-ceramic coating system (based on MgO-Al2O3-TiO2 and ZnO-Al2O3-SiO2 based glass systems) for gas turbine engine components has been developed. Thermal shock resistance, adherence at 90 degrees-bend test and static oxidation resistance at the required working temperature (1000 degrees C) for continuous service and abrasion resistance are evaluated using suitable standard methods. The coating materials and the resultant coatings are characterized using differential thermal analysis, differential thermogravimetric analysis, X-ray diffraction analysis, optical microscopy and scanning electron microscopy. The properties evaluated clearly showed the suitability of these coatings for protection of different hot zone components in different types of engines. XRD analysis of the coating materials and the resultant coatings showed presence of a number of microcrystalline phases. SEM micrographs indicate strong chemical bonding at the metal-ceramic interface. Optical micrographs showed smooth glossy impervious defect free surface finish

    Reactions of Carbonyl Sulphide with Palladium Compounds

    Get PDF
    1190-119

    Photoactivation of Carbonyl Sulphide in Presence of Platinum Metal Ions & Their Complexes

    Get PDF
    1153-115

    Drug-eluting implants for osteomyelitis

    No full text
    Osteomyelitis, an inflammatory process accompanied by bone destruction, is caused by infective microorganisms. The high success rates of antimicrobial therapy by conventional routes of administration in controlling most infectious diseases have not yet been achieved with osteomyelitis for several reasons. Local and sustained availability of drugs have proven to be more effective in achieving prophylactic and therapeutic outcomes. This review introduces osteomyelitis-its prevalence and pathogenesis, the present options for drug delivery and their limitations, and the wide range of carrier materials and effective drug choices, with major focus on the pharmaceutical concepts involved in drug delivery system design and development. With increasing numbers of orthopedic surgeries and the advent of combination devices that provide support and deliver drugs, local drug delivery for osteomyelitis is a topic of importance for both social and commercial interest
    corecore