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1. Introduction 

Bioactive glass is composed mainly of silica, sodium oxide, calcium oxide and phosphates. 
The bone-bonding reaction results from a series of reactions in the glass and its surface 
(Hench & Wilson, 1984). When granules of bioactive glass are inserted into bone defects, 
ions are released in body fluids and precipitate into a bone-like apatite on the surface, 
promoting the adhesion and proliferation of osteogenic cells (Ohtsuki et al., 1991; Neo et al., 
1993) which is partially replaced by bone after long time implantation (Neo et al., 1994).  The 
ion leaching phenomenon involves the exchange of monovalent cations from the glass, such 
as Na+ or K+, with H3O+ from the solution, and thus causes an increase in the pH of the 
solution. It is known that osteoblasts prefer a slightly alkaline medium (Ramp et al., 1994; 
Kaysinger & Ramp, 1998), but it is also known that severe changes in pH can inhibit 
osteoblast activity and cause cell necrosis or apoptosis (Brandao-burch et al., 2005; Frick et 
al., 1997; El-ghannam et al., 1997). Bioactive glass with a macroporous structure has the 
properties of large surface areas, which are favourable for bone integration. The behaviour 
of bioactive glass is dependent on the composition of the glass (Brink, 1997; Brink et al., 
1997), the surrounding pH, the temperature, and the surface layers on the glass (Andersson 
et al., 1988; Gatti & Zaffe, 1991). The porosity provides a scaffold on which newly-formed 
bone can be deposited after vascular in growth and osteoblast differentiation. The porosity 
of bioglass is also beneficial for resorption and bioactivity (De Aza et al., 2003). In push-out 
tests the strength of the chemical bond between bioactive glass and the host tissue has been 
measured to be at least ten times higher than the contact osteogenesis (Anderson et al., 
1992). Its high modulus and brittle nature makes its applications limited, but it has been 
used in combination with poly-methylmethacrylate to form bioactive bone cement and with 
metal implants as a coating to form a calcium-deficient carbonated calcium phosphate layer. 
Certain bioactive glass are strong enough to function in stress-bearing sites in the head and 
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neck (e.g., mandible replacement); however, such implants cannot be easily contoured in the 
operating room, and screws cannot be easily placed into bioactive glass blocks because they 
defy drilling and have a tendency to fragment during creation of screw holes. 

2. Bioactive glass materials 

Legendary Prof. L. L. Hench of University of Florida, USA discovered in 1969 that some 
compositions of glasses can bond chemically with bone when implanted to living tissues. 
Many researchers later on discovered some other ceramics, glass-ceramics and composites 
also have the same property (De Groot, 1983, 1988; De Groot et al., 1990; De Groot & 
LeGeros, 1988; Ducheyne et al., 1980; Gross et al., 1988; Gross and Strunz, 1985; Hench, 1987, 
1988; Hench & Ethridge, 1982; Hench et al., 1971; Hench & Wilson, 1984; Holand et al., 1985; 
Hulbert et al., 1987; Jarcho, 1981; Kitsugi et al., 1989; Kokubo et al., 1986; Kokubo et al., 1982; 
Nakamura et al., 1985; Wilson et al., 1981; Yamamuro et al., 1990b; Yamamuro et al., 1988; 
Yoshii et al., 1988). He defined these glasses as ‘bioactive glass’ and since then it has been 
used mostly as a reconstructive material for damaged hard tissues such as bone (Hench, 
2006; Hench et al., 1971). Some more specialized compositions of bioactive glass will bond to 
soft tissues and bone (Wilson & Nolletti, 1990; Wilson et al., 1981; Yamamuro et al., 1990a). 
General characteristics of these bioactive glasses are a time-dependent, kinetic modification 
of the surface that occurs when implanted in vivo (Gross et al., 1988; Hench, 1988), the 
surface forms biologically active hydroxycarbonate apatite (HCA) layer providing bonding 
interface with tissues. The advantage is that it is possible to design this glass to get a 
controlled rate of degradation and bonding to the tissue. The HCA phase that forms on 
these implants is very similar chemically and structurally to the mineral phase in bone and 
thus responsible for interfacial bonding. These bioactive materials develop an adherent 
interface with tissues that resists significant mechanical forces. In some cases this interfacial 
strength of adhesion is equivalent to or greater than the cohesive strength of the implant 
material or the tissue bonded to bioactive implant. The rapid reaction at the surface leads to 
a fast bonding with the living tissues, but, due to the mainly two-dimensional structure of 
the glass network, the mechanical properties are relatively low. It may be noted that small 
changes in the composition can lead to very different properties and thus has added 
advantage of its versatility in contact with different living tissues, on range of properties 
depending on the implantation site of the prosthesis.  
Certain compositional range of bioactive glass containing SiO2, Na2O, CaO, and P2O5 like 
ordinary soda-lime-silica glasses in specific proportions shows bonding to bone (Table 
1).Three key compositional features of these glasses distinguish them from traditional Na2O-
CaO-SiO2 glasses: (1) less than 60 mol. % SiO2, (2) high-Na2O and high-CaO content, and (3) 
high-CaO/P2O5 ratio. As known, SiO2/Al2O3 act as glass network former, CaO/MgO/P2O5 
is the network modifier and Na2O/K2O is the fluxing agent. These compositional features 
made the surface highly reactive when exposed to aqueous medium. Very popular 45S5 
bioactive silica glasses are based upon 45 wt. % SiO2, S as the network former, and a 5 to 1 
molar ratio of Ca to P. Glasses with very lower molar ratios of Ca to P (in the form of CaO 
and P2O5) do not bond to bone (Hench and Paschall, 1973). Different substitutions in the 
45S5 compositions of 5-15 wt. % B2O3 for SiO2, or 12.5 wt. % CaF2 for CaO or crystallizing 
the various bioactive glass compositions to form glass-ceramics were found to have no 
measurable effect on the ability of the material to form a bone bond (Hench & Paschall, 
1973). But, addition of small 3 wt. % Al2O3 to the 45S5 formula prevents bonding 

www.intechopen.com



Development and Applications of Varieties of Bioactive Glass Compositions in Dental  
Surgery, Third Generation Tissue Engineering, Orthopaedic Surgery and as Drug Delivery System 

 

71 

  
 

Sl. 
No. 

Name of the 
composition 

All are in weight %

SiO2 P2O5 CaO
Ca

(PO3)2 
CaF2 MgO MgF2 Na2O K2O Al2O3 B2O3 

Ta2O5 

/TiO2 

1. 
45S5 Bioglass ® 

(Hench et al., 
1971) 

45 6 24.5 - - - - 24.5 - - - - 

2. 

45S5.4F Bioglass 
® (Hench et al., 
1986; Hench et 

al., 1971) 

45 6 14.7 - 9.8 - - 24.5 - - - - 

3. 

45B15S5 Bioglass 
® (Hench and 
Paschall, 1974; 
Hench et al., 

1975) 

30 6 24.5 - - - - 24.5 - - 15 - 

4. 
52S4.6 Bioglass ® 

(Hench and 
Clark, 1982)

52 6 21 - - - - 21 - - - - 

5. 
55S4.3 Bioglass ® 

(Hench and 
Clark, 1982)

55 6 19.5 - - - - 19.5 - - - - 

6. 
KGC Ceravital ® 

(Gross et al., 
1988) 

46.2 - 20.2 25.5 - 2.9 - 4.8 0.4 - - - 

7. 
KGS Ceravital ® 

(Gross et al., 
1988) 

46 - 33 16 - - - 5 - - - - 

8. 
KGy213 Ceravital 

® (Gross et al., 
1988) 

38 - 31 13.5 - - - 4 - 7 - 6.5 

9. 
A/W glass-

ceramic (Kokubo 
et al., 1986) 

34.2 16.3 44.9 - 0.5 4.6 - - - - - - 

10. 
MB glass-ceramic 

(Holand et al., 
1985) 

19-52 4-24 9-3 - - 5-15 - 3-5 3-5 12-33 - - 

11. 
S45P7 

(Andersson et al., 
1988) 

45 7 22 - - - - 24 - - 2 - 

12. 
S53P4 (Zehnder 

et al., 2004) 
53 4 20 - - - - 23 - - - - 

13. 
13-93 (Fu et al., 

2008) 
53 4 20 - - 5 - 6 12 - - - 

14. 
4-Mar (Zhang et 

al., 2008) 
50.5 1 22.5 - - 6 - 5 15 - - - 

15. 
18-04 (Zhang et 

al., 2008) 
54.5 4 20 - - 4.5 - 15 - - 2 - 

16. 
23-04 (Zhang et 

al., 2008) 
56.25 1 20 - - 4.5 - 5 11.25 - 2 - 

17. 
H2-02 (Munukka 

et al., 2008) 
53 2 22 - - 4.5 - 6 11 0.5 1 - 
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Sl. 
No. 

Name of the 
composition 

All are in mole % 

SiO2 P2O5 CaO
Ca 

(PO3)2 
CaF2 MgO MgF2 Na2O K2O Al2O3 B2O3 

Ta2 

O5/ 
TiO2 

ZnO 

18. 
CEL-2 (Vitale-

Brovarone et al., 
2009) 

45 3 26 - - 7 - 15 4 - - - - 

19. 
55S (Loty et al., 

2001) 
55 4 41 - - - - - - - - - - 

20. 
H (Linati et al., 

2005) 
46.2 2.6 26.9 - - - - 24.3 - - - - - 

21. 
HZ5 (Linati et al., 

2005) 
44.4 2.5 25.9 - - - - 23.4 - - - - 3.8 

22. 
HZ10 (Linati et 

al., 2005) 
42.5 2.4 4.8 - - - - 22.5 - - - - 7.8 

23. 
HZ20 (Linati et 

al., 2005) 
38.8 2.2 22.6 - - - - 20.5 - - - - 15.9 

Table 1. Different compositions of bioactive glass materials 

(Andersson et al., 1990; Greenspan & Hench, 1976; Gross et al., 1988; Gross and Strunz, 1985; 
Hench & Clark, 1982; Hench & Paschall, 1973). Gross and co-workers found that a range of 
low-alkali (0-5 wt. %), bioactive silica glass-ceramics (Ceravital ®) also bond to bone (Gross 
et al., 1981; Gross et al., 1988; Gross et al., 1986a; Gross et al., 1986b; Gross & Strunz, 1985; 
1980).  Also small additions of Al2O3, Ta2O5, TiO2, Sb2O3 or ZrO2 inhibit bone bonding (Table 
1). A two-phase silica-phosphate glass-ceramic composed of apatite (Ca10(PO4)6(OH1F2)) 
and wollastonite (CaO.SiO2) crystals (termed A/W glass-ceramic by the Kyoto University 
team, Japan) and a residual SiO2 glassy matrix, also bonds with bone with very high 
interfacial bond strength (Kitsugi et al., 1989; Kokubo et al., 1986; Kokubo et al., 1982; 
Nakamura et al., 1985; Yamamuro et al., 1988; Yoshii et al., 1988). But, addition of A12O3 or 
TiO2 to the A/W glass-ceramic inhibits bone bonding, while a second phosphate phase, -
whitlockite (3CaO.P2O5) does not. Multiphase machinable bioactive silica phosphate glass-
ceramic containing phlogopite ((Na,K)Mg3(AlSi3Ol0)F2), mica and apatite crystals, developed 
by the Freidrich Schiller University, Jena, Germany, bonds to bone despite presence of 
alumina in the composition (Holand et al., 1985). A13+ ions incorporated within the crystal 
phase did not alter the surface reaction kinetics of the material (Vogel et al., 1990). Some 
other compositions of bioactive glass have been developed at Abo Akademi, Turku, Finland, 
for coating onto dental alloys (Andersson et al., 1988; Andersson et al., 1990; Kangasniemi & 
Yti-Urpo, 1990).  
Prof. Hench has recently published the history leading to the development of bioactive glass 
from the discovery of classical 45S5 Bioglass® composition to successful clinical applications 
and tissue engineering (Hench, 2006). High amounts of Na2O and CaO as well as relatively 
high CaO/P2O5 ratio make the glass surface highly reactive in physiological environments 
(Hench, 1991). Other bioactive glass compositions developed over few years contain no 
sodium or have additional elements incorporated in the silicate network such as fluorine 
(Vitale-Brovarone et al., 2008), magnesium (Vitale-Brovarone et al., 2005; Vitale-Brovarone et 
al., 2007), strontium (Gentleman et al., 2010; O'Donnell & Hill, 2010; Pan et al., 2010), iron 
(Hsi et al., 2007), silver (Balamurugan et al., 2008; Bellantone et al., 2002; Blaker et al., 2004; 
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Delben et al., 2009), boron (Gorriti et al., 2009; Liu et al., 2009a; Liu et al., 2009b; Munukka et 
al., 2008), potassium (Cannillo & Sola, 2009) or zinc (Aina et al., 2009; Haimi et al., 2009). 
Introduction of Ag2O into bioactive glass compositions minimize the risk of microbial 
contamination by antimicrobial activity of the leaching Ag+ ions has been reported (Blaker et 
al., 2004; Saravanapavan et al., 2003). In the reports synthesis by sol-gel process also allowed 
tailoring of the textural characteristics of the matrix in order to obtain a controlled Ag+ 
delivery system. Introduction of B2O3 into the CaO–SiO2 system on the other hand enhanced 
the bioactivity, for more soluble boric compounds increased the supersaturating of Ca ions 
in the SBF (simulated body fluid) solution and water-corrosive borosilicate glass forms Si–
OH groups that act as nucleation sites for the apatite layer (Ryu et al., 2003). Zn-substituted 
bioactive glass creates a template for osteoblast proliferation and differentiation by the 
interaction between the Zn and inorganic phosphate at the surface of the bioactive glass. 
Addition of Zn has synergistic effect on cell attachment which also maintains the pH of SBF 
within the physiological limit by forming zinc hydroxide in the solution. Limited amounts 
of Zn in the bioactive glass system stimulate early cell proliferation and promote 
differentiation as assessed by the in vitro biocompatibility experimentation. Now, 
compositional dependence of bone bonding and soft-tissue bonding for the Na2O-CaO-
P2O5-SiO2 glasses (constant 6 wt. % of P2O5) is presented in Fig. 1. Compositions at the 
middle of the diagram form a bond with bone (region A). Region A is termed as the 
bioactive-bone bonding boundary. Silica glasses within region B (such as bottle, window or 
slide glasses of microscope) behave as nearly inert materials and elicit a fibrous capsule at 
the implant-tissue interface. Glasses within region C are resorbable and disappear within 
maximum 1 day of implantation. Glasses within region D are not technically realistic and 
have not been tested as implants. The collagenous constituent of soft tissues can strongly 
adhere to the bioactive silica glasses which lie within the compositional range marked as E 
(Fig. 1). 
Very briefly, bioactive glass can be made either by conventional melt-quenching (Chen et al., 
2008b; Guarino et al., 2007; Hench & Polak, 2002; Hutmacher et al., 2007; Jones, 2007; Jones, 
2009; Misra et al., 2006) or by modern sol-gel method (Balamurugan et al., 2007; Radha & 
Ashok, 2008). Sol-gel process involves synthesis of solution (sol), typically composed of 
metal-organic and metal salt precursors followed by formation of gel by chemical reaction 
or aggregation and finally thermal treatment for drying, organic removal and sometimes 
crystallization (Olding et al., 2001). This particular method is a low temperature preparative 
method and glasses produced by this method may have some porous structure too with 
high specific surface area (Sepulveda et al., 2001). There are diversified application potential 
of different bioactive glass which have been discussed many authors and will be presented 
in the subsequent sections. But, bone tissue engineering is a very exotic future clinical 
application of these materials. Both micron-sized and nano-scale particles deployed recently 
(Brunner et al., 2006; Delben et al., 2009; Vollenweider et al., 2007) are considered to be the 
part of this application field which also include fabrication of composite materials, e.g., 
combination of biodegradable polymers and bioactive glass (Liu et al., 2008; Lu et al., 2003; 
Misra et al., 2010a; Misra et al., 2010b; Misra et al., 2008; Yang et al., 2001). Bioactive glass-
ceramics on the other hand belong to the group of Class A bioactive materials which are 
characterized by both osteoconduction (growth of bone at the implant surface) and 
osteoinduction (activation and recruitment of osteoprogenitor cells by the material itself 
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stimulating bone growth on the surface of the material) (Hench, 2006; Hench, 1998; Jones, 
2007; Thompson & Hench, 1998). In contrast, Class B bioactive materials exhibit only 
osteoconductivity. A recent review summarizing research on Ca-Si-based ceramics is also 
available (Wu, 2009). As far as bioactive glass-ceramics are concerned, these are partially 
crystallized glasses produced by heating the parent bioactive glass above its crystallization 
temperature, usually at about 610-630o C (Boccaccini, 2005; Boccaccini et al., 2007; Brunner et 
al., 2006; Jones, 2007). Glass-ceramics obtained by a sintering process, it is found that during 
the incidence of crystallization and densification, the microstructure of the parent glass 
shrinks, porosity is reduced and the solid structure gains mechanical strength (Thompson & 
Hench, 1998). But, brittleness and low fracture toughness remain a major problem of these 
materials. The limited strength and low fracture toughness (i.e., resistance to fracture crack 
propagation) of bioactive glass has so far prevented their use for load-bearing implants 
(Boccaccini, 2005; Hench, 2006; Thompson & Hench, 1998; Thompson, 2005). Subsequently, 
the repair and regeneration of large bone defects at load-bearing anatomical sites remains a 
clinical/orthopedic challenge (Fu et al., 2010; Kanczler & Oreffo, 2008). 
 
 

 
 

 

Fig. 1. Compositional dependence of bone bonding and soft tissue bonding of bioactive 
glass and glass ceramics. All compositions in region A have a constant 6 wt. % of P2O5. A-
WGC (apatite-wollastonite glass-ceramic) has higher P2O5 content (Table 1). Region E (soft 
tissue boding) is inside the dashed line where IB>8 [* 45S5 Bioglass ®, ▲ Ceravital®, ● 
55S4.3 Bioglass ®, and (---) soft-tissue bonding; IB=100/t0.5bb, where t0.5bb is the time to have 
more than 50% of the implant surface bonded to the bone and IB is bioactivity index, i.e. the 
level of bioactivity of a specific material can be related to the time for more than 50% of the 
interface to be bonded (Hench, 1988; Hench, 1991)] 
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2.1 Reaction kinetics 

When a bioactive glass is immersed in an aqueous solution, like SBF (simulated body fluid) 
or TBS (tris buffer solution), there are three distinguishing reactions could be identified 
(Andersson et al., 1992; Hench, 1991, 1996, 1998; Hench & Andersson, 1993) (Fig. 2):  
 

 
Fig. 2. Sequence of interfacial reactions kinetics involved in forming a bond between bone 
and a bioactive glass [modified after (Hench, 1998) and (Gerhardt & Boccaccini, 2010)]. 

1. Leaching and formation of silanols: Glass network releases alkali or alkaline earth 
elements exchanging cations with H+ or H3O+ cations proceeding from the solution. 
These modifying ions lead to high values of the interfacial pH, usually more than 7.4. 

2. Dissolution of the glass network: -Si-O-Si-O-Si- bonds break through the action of 
hydroxyl ions. Breakdown of the silica network releases locally silicic acid [Si(OH)4]. If 
there is more than 60% of silica, the dissolution rate decreases as this increases the 
number of bridging oxygens in the structure of the glass. The hydrated silica (Si-OH) 
formed on the glass surface by these reactions undergoes rearrangement by 
polycondensation of neighboring silanols, resulting in a silica rich gel layer. 

3. Precipitation: Calcium and phosphate ions released from the glass together with those 
from solution form a calcium-phosphate rich layer (CaP) on the surface. This phosphate 
is initially amorphous, then crystallizes to a hydroxycarbonate apatite (HCA) structure 
by incorporating carbonate anions from solution within the amorphous CaP phase. The 
mechanism of nucleation and growth of HCA appears to be the same in vivo and in vitro 
and is accelerated by the presence of hydrated silica. These stages do not depend on the 
presence of the tissue and they are observed in distilled water as well as SBF or tris-
buffer solution. The following additional series of reactions is needed to get a bond with 
the tissue: 

4. Absorption of biological moieties in the SiO2-HCA layer 
5. Action of macrophages 
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6. Attachment of stem cells 
7. Differentiation of stem cells 
8. Generation of matrix 
9. Mineralisation of matrix 
This model as proposed by Prof. Hench is widely accepted but has some limitations too. As 
for example the first stage of the reaction relies on the rapid exchange of the Na+ ions 
released from the glass with the protons of the solution, although bioactive glass have been 
produced without sodium. The index as given in Fig. 1 is also not predictive of the influence 
of the silica mole fraction on the reactivity of the glass. Some parameters like network 
connectivity based on the inorganic polymer model for glasses could be considered to 
describe the behavior of a bioactive glass (Bovo, 2007). The closer the glass composition to 
the boundary of Fig. 1, the slower is the bonding rate. Usually, the thickness of the bonding 
zone is proportional to IB. As the thickness of this zone increases, the failure strength 
decreases. Further, it was found that if they break after implantation and the broken 
surfaces stay in contact with SBF, they may self-repair fusing themselves through their 
apatite surface layers (Bovo, 2007). Again, bioactive glass produced by Ebisawa et al. with a 
molecular formula of CaO.SiO2 (Ebisawa et al., 1990) could not account for the bioactivity, 
the model of which proposed by Prof. Hench (Hill, 1996).  
Concepts such as cross-link density or network connectivity can be applied to describe their 
structure if silicate glasses are considered to be inorganic polymers of silicon cross-linked by 
oxygen (Ray, 1978). The network connectivity of a glass is defined as the average number of 
additional cross-linking bonds (more than two) for elements other than oxygen that form the 
network backbone. The calculation of network connectivity of a glass network is based on 
the relative numbers of network-forming oxide species (those which contribute “bridging” 
or cross-linking oxygen species) and network-modifying species (those which result in the 
formation of “non-bridging” species) present (Wallace et al., 1999). The network 
connectivity of a glass can be used to predict various physical properties of the glass, 
including its solubility (Hill, 1996). The silicate structural units in a glass of low network 
connectivity are probably of low molecular mass and are capable of going into solution. 
Thus, glass solubility increases as network connectivity is reduced. So, glasses of low 
network connectivity are potentially bioactive (Wallace et al., 1999). Lockyer et al. 
determined the effect of substituting sodium oxide for calcium oxide on some glass 
properties (Lockyer et al., 1995). Most studies on bioactive glass systems have been carried 
out on a weight per cent basis. But, mole per cent substitutions are known to have more 
significance on a structural level. Weight percent basis has the effect of hiding the 
composition-property relationships of bioactive glass as there is no account taken of the 
degree of disruption of the glass network (Lockyer et al., 1995; Strnad, 1992). Fig. 3 
represents a highly disrupted glass network. It can be seen that for every mole of calcium 
oxide removed from the glass network, one mole of sodium oxide must be added in order to 
maintain the same number of non-bridging oxygen species and, thus the same network 
connectivity value. So, a substitution on weight per cent basis produces a change in the 
relative number of non-bridging oxygen species and bridging oxygen species, with 
consequent change in network connectivity. Work carried out by Wallace et al. uses the 
concepts of network connectivity for the purposes of designing bioactive glass compositions 
for control of the physical, chemical and biological properties of bioactive glass (Wallace et 
al., 1999).  
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Fig. 3. Representation of glass structure (Wallace et al., 1999) 

2.2 Fabrication 

Properties of bioactive glass and glass-ceramics are dependent on fabrication methods and 
the heat-treatment used. Many scaffold fabrication techniques have been reported in the 
literature, e.g., foam replication methods, salt or sugar leaching, thermally induced phase 
separation, microsphere emulsification sintering, electrospinning for nano-fibrous 
structures, computer aided rapid prototyping techniques (Yang et al., 2002; Yun et al., 2007), 
textile and foam coating methods (De Diego et al., 2000; Francis et al., 2010; Mohamad 
Yunos et al., 2008) and biomimetic approach (Oliveira et al., 2003; Taboas et al., 2003). All of 
these methods were done to optimize the structure, properties and mechanical integrity of 
scaffolds. The design and incorporation of nano-topographic features on the scaffold surface 
architecture, in order to mimic the nanostructure of natural bone, is also becoming a 
significant area of research in bone tissue engineering (Berry et al., 2006; Jones, 2009; Stevens 
& George, 2005; Webster & Ahn, 2007). Also, comprehensive reviews of the general state-of-
the art in scaffold manufacturing and optimization are available (Boccaccini & Blaker, 2005; 
Guarino et al., 2007; Hutmacher et al., 2007; Mohamad Yunos et al., 2008; Rezwan et al., 
2006; Yang et al., 2001). 
Pores of bioactive glass and glass-ceramics could be formed by the addition of suitable 
porogens, such as polymeric materials and foaming agents (Karlsson et al., 2000). Rainer et 
al. prepared bioactive glass foams for mimicking bone tissue engineering scaffolds using in 
situ foaming of bioactive glass-loaded polyurethane foam (Rainer et al., 2008). Inspired by 
this fabrication technique, the bioactive materials were prepared with three-dimensional 
processing and showed promising applications in reconstructive surgery tailored to each 
single patient. Polyethylene glycol 4000 (HO(C2H4O)-nH) with particles sizes of 5-500 μm 
was used as foaming agent for preparing porous bioactive glass ceramic (Lin et al., 1991). 
This group has also reported the compatibility of porous bioactive glass ceramic with animal 
tissues. The microstructures of the implant were distributed uniformly in the material, 
which provided channels for bone in-growth and improved the microscopic bioresorption. 
Organic polymers were found to be an alternate attractive choice for generating desired 
pores and porosity due to the complete degradation at temperatures above 600° C. These 
organic polymers are abundant in natural environment, also available as biomass such as 
dry and wet woods and crops. This can be obtained from wastes in many related industries 
too such as food processing and wood finishing manufactures (Sooksaen et al., 2008). It was 
reported that textural properties (pore size, pore volume, pore structure) of biomaterials 
may have complex influences on the development of the apatite layer in bioactive glass. 
Increasing the specific surface area and pore volume of bioactive glass may greatly 
accelerate the apatite formation and therefore enhance the bioactive behavior (Vallet-Regí et 
al., 2003). 

www.intechopen.com



 
Biomaterials Applications for Nanomedicine 

 

78

Sl. No. Glass composition or system Reference 
Fabrication method 

adopted 

Particle size of 
starting glass 

powder 

1 45S5 
(Ochoa et al., 

2009) 
Polymer foam 

replication
< 5 μm 

2 
SiO2-CaO-CaF2-Na2O-K2O-

P2O5-MgO 

(Vitale-
Brovarone et 

al., 2008)

Polymer foam 
replication 

< 32 μm 

3 
SiO2-P2O5-CaO-MgO-Na2O-

K2O 

(Vitale-
Brovarone et 

al., 2009b; 
Vitale-

Brovarone et 
al., 2007)

Polymer foam 
replication 

< 30 μm 

4 
SiO2-P2O5-CaO-MgO-Na2O-

K2O
(Renghini et 

al., 2009)
Polymer foam 

replication
-do- 

5 45S5 
(Chen et al., 

2008a)
Polymer foam 

replication
10-20 μm 

6 SiO2-Na2O-CaO-MgO 
(Vitale-

Brovarone et 
al., 2005)

Starch consolidation < 100 μm 

7 
SiO2-P2O5-B2O3-CaO-MgO-

K2O-Na2O 
(Moimas et al., 

2006) 

Compaction and 
sintering of melt-spun 

fibers

75 μm (fibre 
diameter) 

8 
SiO2-CaO-Na2O-K2O-P2O5-

MgO-CaF2

(Baino et al., 
2009) 

Polymer porogen 
bakeout

< 106 μm 

9 45S5 
(Boccaccini et 

al., 2007)
Polymer foam 

replication
20-50 μm 

10 
SiO2-Na2O-K2O-MgO-CaO-

P2O5

(Fu et al., 
2007) 

Slip casting 255-325 μm 

11 
SiO2-Na2O-K2O-MgO-CaO-

P2O5

(Fu et al., 
2008) 

Polymer foam 
replication

< 5-10 μm 

12 
SiO2-Na2O-K2O-MgO-CaO-

P2O5

(Fu et al., 
2010) 

Freeze casting < 5 μm 

13 SiO2-CaO-K2O 
(Vitale 

Brovarone et 
al., 2006)

Polymer porogen 
burn-off 

< 106 μm 

14 
SiO2-TiO2-B2O3-P2O5-CaO-

MgO-K2O-Na2O 
(Haimi et al., 

2009) 

Compaction and 
sintering of melt-spun 

fibers

75 μm (fibre 
diameter) 

15 45S5 
(Deb et al., 

2010) 
Polymer porogen 

bakeout
45-90 μm 

16 45S5 
(Bretcanu et 

al., 2008)
Polymer foam 

replication
< 5 μm 

17 
SiO2-Na2O-K2O-MgO-CaO-

P2O5; 45S5 
(Brown et al., 

2008) 

Densification and
sintering of melt-spun 

fibers

25-40 μm (fibre 
diameter) 
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18 45S5 
(Chen et al., 

2006b)
Polymer foam 

replication
≈ 5 μm 

19 45S5 
(Chen et al., 

2006a)
Polymer foam 

replication
5-10 μm 

20 45S5 
(Chen et al., 

2007) 
Polymer foam 

replication
≈ 10 μm 

21 
SiO2-P2O5-CaO-MgO-Na2O-

K2O 

(Vitale-
Brovarone et 

al., 2010)

Polymer burn-off, 
foam replication 

Not applicable 

22 45S5 
(Vargas et al., 

2009) 
Polymer foam 

replication
< 5 μm 

23 
SiO2-Na2O-CaO-P2O5-B2O3-

TiO2

(Ghosh et al., 
2008) 

Polymer porogen 
bakeout

Not applicable 

24 
SiO2-Na2O-CaO-P2O5-B2O3-

TiO2

(Nandi et al., 
2009) 

Polymer porogen 
bakeout

Not applicable 

25 SiO2-CaO-P2O5-Al2O3 
(Mahmood et 

al., 2001)
Manual free-forming 
of melt- spun fibers

8-30 μm (fibre 
diameter) 

26 
SiO2-CaO-Na2O-P2O5-K2O-

MgO-B2O3

(Mantsos et 
al., 2009)

Polymer foam 
replication

Not applicable 

27 
SiO2-CaO-Na2O-K2O-MgO-

P2O5-B2O3 
(Miguel et al., 

2010) 

Densification and
sintering of melt-spun

fibers

75 μm (fibre 
diameter) 

Table 2. Summary of recent studies performed on silicate bioactive glass-ceramic scaffolds 

2.3 Clinical relevance  

For bioactive glass-ceramics, recent developments related to bone tissue engineering 
scaffolds have been used to remove the gap of load-bearing large bone defects by inter-
playing between architectures and components carefully designed from comprehensive 
levels, i.e., from the macro-, meso-, micrometer down to the nanometer scale (Deville et al., 
2006), including both multifunctional bioactive glass composite structures and advanced 
bioactive glass-ceramic scaffolds exhibiting oriented microstructures, controlled porosity 
and directional mechanical properties (Baino et al., 2009; Bretcanu et al., 2008; Fu et al., 2010; 
Fu et al., 2008; Vitale-Brovarone et al., 2010). As summarized in Table 2 [reproduced from 
(Gerhardt & Boccaccini, 2010)], most of the studies have mainly investigated the mechanical 
properties, in vitro and cell biological behavior of glass-ceramic scaffolds (Baino et al., 2009; 
Boccaccini et al., 2007; Bretcanu et al., 2008; Brown et al., 2008; Chen et al., 2007; Chen et al., 
2006a; Chen et al., 2008a; Chen et al., 2006b; Deb et al., 2010; Fu et al., 2010; Fu et al., 2007; Fu 
et al., 2008; Ghosh et al., 2008; Haimi et al., 2009; Klein et al., 2009; Kohlhauser et al., 2009; 
Mahmood et al., 2001; Mantsos et al., 2009; Miguel et al., 2010; Moimas et al., 2006; Nandi et 
al., 2009; Ochoa et al., 2009; Renghini et al., 2009; Vargas et al., 2009; Vitale-Brovarone et al., 
2009a; Vitale-Brovarone et al., 2010; Vitale-Brovarone et al., 2009b; Vitale-Brovarone et al., 
2008; Vitale-Brovarone et al., 2004; Vitale-Brovarone et al., 2005; Vitale-Brovarone et al., 
2007; Vitale Brovarone et al., 2006). Scaffolds with compressive strength (Baino et al., 2009; 
Fu et al., 2010) and elastic modulus values (Fu et al., 2010; Fu et al., 2008) in magnitudes far 
above that of cancellous bone and close to the lower limit of cortical bone have been 
realized. 
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3. Bioactive glass in dental surgery and cranio-maxillofacial augmentation 

The increasing need for biomedical devices, required to face dysfunctions of natural tissues 
and organs caused by traumatic events, diseases and simple ageing, has drawn attention 
onto new materials that could be able to positively interact with the human body. 
Biomaterials play a significant role in dental, craniofacial and maxillofacial reconstruction. 
Their ever-increasing ease of use, long ‘shelf-life’ and safety enables them to be used 
efficiently and play an important role in reducing operating times (Gosain & Persing, 1999; 
Chim & Gosain, 2009). The ideal biomaterial in such reconstruction should be biocompatible 
with surrounding tissue without elucidating a foreign body reaction, radiolucent, easily 
shaped or molded, strong enough to endure trauma, stable over time, able to maintain 
volume, and osteoactive (Gosain & Persing, 1999; Damien & Parsons, 1991; Costantino et al., 
1992; Jackson & Yavuzer, 2000; Gosain, 2003). 
Abnormality of the craniofacial skeleton may bring in from various causes, including tumor 
resection, severe infection, trauma, or congenital deformity. Restoring appropriate contour 
and support in the cranio-orbital region following loss or removal of bone may be quite 
challenging to the Craniofacial and Neurosurgeons. Since the late 1800’s when Muller 
described using calvarial bone grafts for reconstruction, they have remained the gold 
standard [Muller, 1890]. Autologous bone grafting provides a rich amount of native tissue 
that has a high possibility of osseous integration with little risk of rejection or infection long-
term, in addition to safety and security (Manson et al., 1986). Although autogenous bone is 
the ideal material to primarily reconstruct large skull bone defects (Barone & Jimenez, 1997; 
Goodrich et al., 1992; Weber et al., 1987), it has some drawbacks in reconstruction including 
donor site morbidity, prolonged operating times, limited availability, and difficulty to 
contour (Nickell et al., 1972; Whitaker et al., 1979; Jackson et al., 1983). In the pediatric 
surgery, bone grafts may be relatively easily contoured and curved while, in adults, it is 
often difficult to achieve the precise three dimensional contours normally found in the 
cranio-orbital region (Ducic, 2001). Research was then initiated by reconstructive surgeons 
to find alternative means of reconstruction with alloplasts. In reality, alloplast reconstruction 
of the calvarium dates back to the year 2000 B. C. in ancient Peru when a gold plate was 
used to disguise a trephination defect (Grana et al., 1954). Since then, various alloplasts have 
been used in craniofacial reconstruction. The most commonly utilized material has been 
methylmethacrylate. Although, it suffers from several potential drawbacks including lack of 
osseointegration, secondary infection, plate fracture, erosion of the underlying recipient 
bone, necrosis of surrounding tissues during setting as it forms during an exothermic 
reaction with temperatures reaching 110° C, and difficulty shaping once polymerization 
occurs (Ducic , 2002; Costantino  et al., 2000; Smith  et al., 1999).  
In the past century, other metallic materials, such as silver, tantalum, stainless steel or 
titanium and calcium phosphate based materials like hydroxyapatite cement, calcium 
orthophosphate cements, porous granular hydroxyapatite, marine coral-based calcium 
carbonate were used for reconstruction purposes. The present endeavor deals with the 
application of bioactive glass based material in dental, craniofacial and maxillofacial 
reconstruction.  Bioactive glass (BG) is biocompatible, osteoconductive, form a strong bond 
with living tissue via the formation of a hydroxyapatite layer on their surface (Meffert et al., 
1985; Schepers et al., 1991; Hench et al., 1971) and have been used to repair hard tissues in a 
variety of craniofacial, maxillofacial, and periodontal applications (Hench, 1991). It has also 
been established that BG has good mechanical properties and a higher bioactivity in 
comparison to hydroxyapatite (Mardare et al., 2003; Ghosh et al., 2008)  

www.intechopen.com



Development and Applications of Varieties of Bioactive Glass Compositions in Dental  
Surgery, Third Generation Tissue Engineering, Orthopaedic Surgery and as Drug Delivery System 

 

81 

BG particulate, for example, is used in a variety of dental procedures (Shapoff et. al., 1997), 
and many BG compositions can be formed into scaffolds for tissue engineering (Jones et al., 
2007). Surface reactivity, however, is not their only mechanism of action as BG also releases 
ions that promote the osteoblast phenotype (Effah Kaufmann et al., 2000; Jell et al., 2008). In 
vitro studies have established that BG stimulates osteoprogenitors to differentiate to mature 
osteoblasts that produce bone-like nodules (Tsigkou et al., 2007; 2009). Bioactive glass was 
used in dentistry as a bioactive material in endosseous ridge maintenance implants (ERMI) 
as early as in 1986. Dicor® was the first glass-ceramic that allowed the manufacture of inlays 
and crowns where the major crystalline phase in the glass ceramic was mica (Grossman, 
1991). A new glass-ceramic was developed by sol-gel technique having resemblance with 
commercial leucite based fluorapatite dental glass-ceramic. The produced material has 
prospective application in dental restorations and it is anticipated to exhibit better control of 
composition, microstructure and properties due to the intrinsic advantages of the sol-gel 
preparation method (Chatzistavrou et al., 2009). Recent studies indicated that rhenanite 
glass-ceramics can be utilized in dentistry (Holand et al., 2006). In a study, bioactive glass 
coated titanium alloy dental implants were compared with hydroxyapatite implants in 
human jaw bone and observed that bioactive glass coated implants were as equally 
successful as hydroxyapatite in achieving osseointegration and supporting final restorations 
(Mistry et al., 2011). Bioglass was mixed with phosphoric acid and irradiated with CO(2) 
laser could occlude the dentinal tubule orifices with calcium-phosphate crystals where the 
application of CO(2) laser potentially improved the mechanical organization of these crystals 
(Bakry et al., 2011). In another study, radio-opaque nanosized bioactive glass was used for 
root canal application particularly for dressing or filling material (Mohn et al., 2010). A 
modified bioglass formula was used as a pulp capping agent where the incidence of 
properly positioned dentin bridge formation was higher and the incidence of extruded 
dentin bridge formation was reduced (Stanley et al., 2001). A new treatment for localized 
aggressive periodontitis using enamel matrix proteins and bioactive glass resulted in the 
successful treatment of intrabony defects (Miliauskaite et al., 2007; Zietek et al., 1998). 
Bioactive glass was used in the treatment of intrabony defects in patients with generalized 
aggressive periodontitis (Mengel et al., 2006), in patients with moderate to advanced 
periodontitis with excellent outcome in mandibular molar Class II furcations (Yukna et al., 
2001), molar furcation invasions (Anderegg et al., 1999), periodontal intrabony defects 
(Zamet et al., 1997) and in experimental periodontal wound healing in animal model 
(Karatzas et al., 1999). The effects of a recombinant mouse amelogenin (rM179) on the 
growth of apatite crystals nucleated on a bioactive glass (45S5 type Bioglass) surface were 
investigated with a view to gaining a better understanding of the role of amelogenin protein 
in tooth enamel formation and of its potential application in the design of novel enamel-like 
biomaterials (Wen et al., 1999). A fibre-reinforced bioglass composite is a promising material 
for dental applications where fibre significantly increases strength and toughness (Gheysen 
et al., 1983). PerioGlas, a silicate-based synthetic biomaterial was used for regeneration of 
peri-implant infrabony defects where new bone eventually reaches the implant, and 
osseointegration occurs with incorporation of the PerioGlas particles (Johnson et al., 1997).  
Bioactive glass has been used in cranio-maxillofacial reconstruction especially on the repair 
of periodontal and alveolar ridge defects (Quinones & Lovelace, 1997; Han et al., 2002; Sy, 
2002; Throndson & Sexton, 2002; Norton & Wilson, 2002; Knapp et al., 2003) although its use 
is also extended for successful reconstruction of other areas of the head and neck 
(Scotchford et al., 2011). Bioactive glass has been utilized for the repair of orbital floor 
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fractures with maintenance of globe position (Kinnunen et al., 2000; Aitasalo et al., 2001) and 
elevation of the floor of the maxillary sinus floor (Tadjoedin et al., 2002) in combination with 
autogenous iliac bone. Bioactive glass particles (Nova Bone, Porex Surgical) mixed with 
autogenous bone particles has also been used to cranial vault reconstruction (Gosain, 2003), 
in clinical studies in the treatment of cystic defects, ridge augmentations, apical resections, 
extraction sites, periodontal osseous defects and sinus lifts and augmentation (Furusawa T, 
Mizunuma, 1997; Low et al., 1997; Lovelace et al., 1998; Galindo-Moreno et al., 2008; 
Klongnoi et al., 2006).  Bioactive glass posed some complications when used as a ceramic 
implant for contour restoration of the facial skeleton.  

4. Bioglass as bone graft substitute 

The management of fractures remains an incessant challenge for trauma and orthopedic 
surgeons. Although, majority of fractures heal uncomplicated, 5–10% of patients meet 
problems due to bone defects or impaired fracture healing, or a combination of both 
(Einhorn, 1995). Bone grafts fill voids and offer support, and therefore may augment the 
biological repair of the defect. Bone grafting is a widespread surgical procedure, carried out 
in approximately 10% of all skeletal reconstructive surgery cases (Schnettler & Markgraf, 
1997).  
Bone healing differs from any other soft tissue since it heals through the generation of new 
bone rather than by forming fibrotic tissue. Osteogenesis, osteoinduction, osteoconduction 
and adequate blood and nutrient supply are the four critical elements of bone regeneration 
along with the final bonding between host bone and grafting material which is called 
osteointegration (Hing, 2004). Osteoprogenitor cells living within the donor graft, may 
survive during transplantation, could potentially proliferate and differentiate to osteblasts 
and eventually to osteocytes which represent the ‘‘osteogenic’’ potential of the graft (Cypher 
& Grossman, 1996; Giannoudis et al., 2005). ‘‘Osteoinduction’’ conversely is the stimulation 
and activation of host mesenchymal stem cells from the surrounding tissue, which 
differentiate into bone-forming osteoblasts. This process is mediated by a cascade of signals 
and the activations of several extra and intracellular receptors the most important of which 
belong to the TGF-beta superfamily (Urist, 1965; Cypher & Grossman, 1996). 
Osteoconduction describes the facilitation and orientation of blood-vessel and the creation 
of the new Haversian systems into the bone scaffold [Burchardt, 1983; Constantino & 
Freidman, 1994]. At last, ‘‘osteointegration’’ describes the surface bonding between the host 
bone and the grafting material (Constantino & Freidman, 1994).  
The most desirable form of bone substitute is the autologous bone graft for their superior 
osteoconduction, ease of incorporation, lack of immunological reactions, contains living 
bone cells that offer osteogenesis and growth factors that stimulate osteoinduction (Cypher 
& Grossman, 1996; Naber et al., 1972; Marciani et al., 1977). However, massive replacements 
of bone are not easily achieved by bone autografts as autogenous bone is limited in 
availability, and may result in the donar site morbidity (Mankin et al., 1976). Moreover, 
harvesting the autograft requires an additional surgery at the donar site that can result in its 
own 8–39% risk of complications, such as inflammation, risk of extensive blood loss 
infection, nerve and urethral injury, pelvic instability, cosmetic disadvantages and chronic 
pain (Banwart et al., 1995; Constantino & Freidman, 1994; Patka et al., 1998; Younger & 
Chapman, 1989; Summers & Eisenstein, 1989; Ross et al., 2000; Seiler & Johnson, 2000; 

www.intechopen.com



Development and Applications of Varieties of Bioactive Glass Compositions in Dental  
Surgery, Third Generation Tissue Engineering, Orthopaedic Surgery and as Drug Delivery System 

 

83 

Skaggs et al., 2000). Furthermore, autografting is normally not recommended for elderly or 
pediatric patients or for patients with malignant or infectious disease (Bridwell et al., 1994; 
Gau et al., 1991; McCarthy et al., 1986). An allograft is preferred in some cases but the 
possible immune response and disease transmission may be detrimental for the recipient 
(Asselmeier et al., 1993; Stevenson & Horowitz, 1992; Chapman et al., 1997; Gazdag et al., 
1995), so their use is suboptimal. 
Despite the benefits of autografts and allografts, the limitations of each have necessitated the 
pursuit of alternatives biomaterials. The ideal bone composite material with composition 
and mechanical properties equivalent to that of bone should have adequate 
biocompatibility, tailorable biodegradability, ability to initiate osteogenesis; in short, the 
graft should closely mimic the natural bone. Biodegradability together with biocompatibility 
and suitable mechanical properties are found only in a small group of materials. The aim of 
the present chapter was to provide a comprehensive overview of literature data of bioactive 
glass as bone substitutes for use in trauma and orthopedic surgery. 
Bioactive glasses exhibit osteoinductive and osteoconductive properties (Giannoudis et al., 
2005) and can be manufactured into microspheres, fibers and porous implants. They are 
bioactive, as they interact with the body. Bioactivity depends upon the SiO2 content; the 
bonding between bone and glass is most excellent if the bioactive glass contains 45–52% 
SiO2 (Valimaki & Aro, 2006). The combination of hydroxyapatite with bioglass result in 
better composite bioactivity and biocompatibility compared to hydroxyapatite alone 
(Cholewa-Kowalska et al., 2009). They have significantly greater mechanical strength when 
compared to calcium phosphate preparations. After contact with body fluids, a silicate- rich 
layer is formed leading to mechanical strong graft–bone bonding. Above this, a 
hydroxyapatite layer will form, which directs new bone formation together with protein 
absorption. The extracellular proteins magnetize macrophages, mesenchymal stem cells and 
osteoprogenitor cells. Consequently, the osteoprogenitor cells proliferate into matrix-
producing osteoblasts (Valimaki & Aro, 2006; Hench & Paschall, 1973). Mechanical 
properties of bioactive glass are not optimal, and therefore other ceramic components are 
sometimes added to the bioactive glass for reinforcement. Mechanical capability and 
biological absorbability of SiO(2)-CaO bioactive glass may also be improved by 
incorporating Na(2)O into bioactive glass, which can result in the formation of a hard yet 
biodegradable crystalline phase from bioactive glass when sintered by sol-gel process (Chen 
et al., 2010). In another study, mechanical properties of potassium fluorrichterite 
(KNaCaMg(5)Si(8)O(22)F(2)) glass-ceramics may be improved by either increasing the 
concentration of calcium (GC5) or by the addition of P(2)O(5) (GP2) that has potential as a 
load bearing bioceramic for fabrication of medical devices intended for skeletal tissue repair 
(Bhakta et al., 2010; Bandyopadhyay-Ghosh et al., 2010). A new porous bioactive glass has 
been developed by foaming with rice husks and sintering at 1050 degrees C for 1 hour that 
provides sufficient mechanical support temporarily while maintaining bioactivity, and that 
can biodegrade at later stages is achievable with the developed 45S5 bioglass-derived 
scaffolds (Wu et al., 2009).  
In experimental cancellous bone defects in rat models, bioactive glass was found 
biocompatible, and the filler effect was greater with bioactive glass than with autogenous 
bone (Heikkila et al., 1995). Bioglass was found to trigger new bone formation by allogenic 
demineralized bone matrix, and the biocompatibility of the glass was verified by the 
absence of adverse cellular reactions (Erdemli et al., 2010; Pajamaki et al., 1993a, 1993b). 
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Biocompatibility and osteogenesis of biomimetic bioglass-collagen composite scaffolds alone 
and in combination with phosphatidylserine were also studied and confirmed that the 
composite scaffolds fulfill the basic requirements of bone tissue engineering scaffold and 
have the potential to be applied in orthopedic and reconstructive surgery (Marelli et al., 
2010; Xu et al., 2011). Addition of hyaluronic acid and mesenchymal stem cell in the 
aforesaid scaffold further enhanced the healing of the bone defect (Xu et al., 2010). Bone-
bonding response significantly enhanced with the micro-roughening of the bioactive glass 
surface, but the glass composition affected the intensity of the response (Itala et al., 2003). 
Bioactive glass have shown no or only mild inflammatory responses in the surrounding 
tissue in histological in vivo studies and in 6 months, the glass fiber scaffolds are completely 
resorbed (Moimas et al., 2006). In an experimental critical size bone defect model in goat, 
porous bioactive glass promoted bone formation over the extension of the defect and offers 
interesting potential for orthopedic reconstructive procedures (Nandi et al., 2009). Bioglass 
has been investigated extensively in bone tissue engineering but there has been relatively 
little previous research on its application to soft-tissue engineering. In a study, bioactive 
glass incorporated into scaffold was able to increase neovascularization that is extremely 
beneficial during the engineering of larger soft-tissue constructs (Day et al., 2004). 
Irrespective of soft and hard tissue healing necessitates enhanced neovascularization which 
can be induced by localized low concentration bioglass delivery and may offer an 
alternative approach to costly growth factors and their potential side-effects in bone 
regeneration (Leu et al., 2009). 
The first reports on clinical applications of bioactive glass materialize in the 1980s (Reck, 
1981). Screw augmentation with bioactive glass was evaluated in 37 Weber type B ankle 
fractures with no information of screw loosening within a period of 2 years (Andreassen et 
al., 2004). Bioactive glass have been clinically used in vertebroplasty (Middleton et al., 2008; 
Palussiere et al., 2005), treatment of an unstable distal radius fracture (Smit et al., 2005), 
tympanoplastic reconstruction (Reck, 1983), as filling material in benign tumour surgery 
(Heikkila et al., 1995), for reconstruction of defects in facial bones [Suominen & Kinnunen, 
1996], for treatment of periodontal bone defects (Villaca et al., 2005; Leonetti et al., 2000), in 
obliteration of frontal sinuses (Suonpaa et al., 1997; Peltola et al., 2000a, 2000b), in repairing 
orbital floor fractures (Kinnunen et al., 2000; Aitasalo et al., 2001), in lumbar fusion (Ido et 
al., 2000), reconstruction of the maxillary sinus (Scala et al., 2007), in cementless metal-
backed acetabular cups (Hedia et al., 2006) and for reconstruction of the iliac crest defect 
after bone graft harvesting (Asano et al., 1994). The combination of a thermoplastic, viscous 
carrier with a granular bioglass scaffold allowed for the delivery of allergenic mesenchymal 
stem cells in a clinically manageable form that enhanced bone formation at early stages of 
canine alveolar repair (Mylonas et al., 2007). 

5. Bioactive glass in drug delivery system 

In recent years wide spread research has been initiated with new advanced drug delivery 
systems with better drug control and prolonged action. The drug delivery process is of 
paramount importance in assuring that a certain molecule will reach without decomposition 
or secondary reactions at the right place to perform its task with efficiency. The drug is 
introduced as part of an inert matrix, from which it should be released in a controlled way 
and where it should be distributed uniformly. Smart delivery systems that can be utilized 
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for the delivery of antibiotics, insulin, anti-inflammatory drugs, anticancer drugs, hormones 
and vaccines are yet to be developed, which are responsive to normal physiological process. 
Significant consideration is paid on the use of microspheres as carriers for proteins and 
drugs. The main benefit of microspheres over the more traditional macroporous block 
orthopaedic scaffolds is that microspheres possess not only better drug-delivery properties, 
but also the potential to fill the bone defects with irregular and complex shapes and sizes 
(Wu et al., 2004). The interstitial space between the particles of the microspheres is 
imperative for effective and functional bone regeneration (Malafaya et al., 2008; Luciani et 
al., 2008; Hsu et al., 1999), as they permit for both bone and vascular ingrowths. Several 
difficulties are encountered when macromolecules are incorporated in polymer devices e.g. 
protein drugs when impregnated may denature within the polymer matrix causing a loss of 
biological activity and probable changes in immunogenicity (Langer, 1990a, 1980b). This 
may happen due to degradation of the drug by the solvents or the temperature involved in 
the fabrication of the polymeric devices. Presently, ceramics have gained major recognition 
as bone substitute materials in dentistry and medicine as ceramics are biocompatible, 
resorbable and porous, attempts have been made to exploit them as delivery systems for 
drugs, chemicals and biologicals (Bajpai & Benghuzzi, 1988; Bajpai, 1994; Lasserre & Bajpai, 
1998).  

5.1 Drug delivery of antibiotics for treatment of osteomyelitis 
Treatment of orthopaedic infections with antibacterial agents by oral or intravenous route 
often leads the clinicians to be distrustful about patient outcome (Walenkamp, 1997); as the 
condition is frequently associated with poor vascular perfusion accompanied by infection of 
the surrounding tissue (Mader et al., 1993). Subsequent to surgical debridement, it is 
essential to maintain a highly effective concentration of the antibiotic in the infected area for 
a sufficient period of time (usually 4–6 weeks) to allow the healing process to complete 
(Kanellakopoulou & Giamarellos-Bourboulis, 2000). 
Treatment of osteomyelitis with local biodegradable antibiotic delivery systems has become 
a common practice in orthopaedic surgery. Biodegradable implants could provide high local 
bactericidal concentrations in tissue for the prolonged time needed to completely eradicate 
the infection and the likelihood to match the rate of implant biodegradability according to 
the type of infection treated (Kanellakopoulou & Giamarellos-Bourboulis, 2000). 
Biodegradation also makes surgical removal of the implant unnecessary. The implant can 
also be used initially to obliterate the dead space and, eventually to guide its repair. Porous 
block of bioactive glass has been studied for drug delivery applications of antibiotics for 
treatment of osteomyelitis in animal model (Nandi et al., 2009; Kundu et al., 2011). The glass 
ceramic block exists in two forms: one with porosity of 20-30 % and the other of 70 %. 
Excellent results were observed in infected arthroplasty after 2 years of treatment and the 
implanted material triggered osteogenesis so as to produce a complete radiological 
replacement of the osseous defect (Kawanabe et al., 1998). It has been observed that locally 
produced pure or bioglass reinforced plaster of Paris, hydroxyapatite and sodium alginate 
with cephazoline antibiotic are promising biomaterials for treatment of osteomyelitis and 
mainly because of economical reasons and availability, may be an alternative in clinical 
practice, especially for developing countries (Heybeli et al., 2003). Glass reinforced 
hydroxyapatite with sodium ampicillin, a broad spectrum antibiotic has been successfully 
applied for treatment of periodontitis (Queiroz et al., 2001). Gentamicin sulfate impregnated 
bioactive SiO2-CaO-P2O5 glass implants are good carriers for local gentamicin release into 
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the local osseous tissue, where they show excellent biocompatibility and bone integration. 
Moreover, these implants are able to promote bone growth during the resorption process 
(Mes eguer-Olmo et al., 2006; Arcos et al., 2001). Antimicrobial activity of bioactive glass 
(BG) as a controlled release device for tetracycline hydrochloride and an inclusion complex 
formed by tetracycline and b-cyclodextrin has been investigated in mice model where there 
is prolonged period of release of antibiotic due to presence of cyclodextrin. It has been 
observed that there was an initial burst of 12%, followed by a sustained release over 80 days 
and a total release of 22–25%. (Dominguesa et al., 2004). The effectiveness of a degradable 
and bioactive borate glass has been compared with the clinically used calcium sulfate in the 
treatment of osteomyelitis of rabbits, as a carrier for vancomycin and proved to have 
excellent biocompatibility and to be very effective in eradicating osteomyelitis and 
simultaneously stimulating bone regeneration, avoiding the disadvantages of vancomycin 
loaded calcium sulphate (Zongping et al., 2009). Chitosan-bonded mixture of borate 
bioactive glass particles with  teicoplanin (antibiotic) combining sustained drug release with 
the ability to support new bone ingrowth, could provide a method for treating chronic 
osteomyelitis in vitro and in vivo (Wei-Tao et al., 2010; Xin et al., 2010).  In another study, 
well-ordered mesoporous bioactive glass impregnated with gentamycin has been carried 
out in vitro as a bioactive drug release system for preparation of bone implant materials vis-
à-vis treatment of osteomyelitis (Xia & Chang, 2006; Zhu & Kaskel, 2009). Mesoporous 
bioactive glass (MBGs) with different compositions impregnated tetracycline has been 
prepared and their drug release behaviors have been studied (Zhao et al., 2008). Recently, an 
unique multifunctional bioactive composite scaffold mainly 45S5 Bioglass-based glass–
ceramic scaffolds has been investigated with the potential to enhance cell attachment and to 
provide controlled delivery of gentamicin for bone tissue engineering (Francis et al., 2010). 
Composite materials composed of borate bioactive glass and chitosan (designated BGC) 
were investigated in vitro and in vivo as a new delivery system for teicoplanin in the 
treatment of chronic osteomyelitis induced by methicillin-resistant Staphylococcus aureus 
(MRSA) and demonstrated that this system is effective in treating chronic osteomyelitis by 
providing a sustained release of teicoplanin, in addition to participating in bone 
regeneration (Jia et al., 2010). 

5.2 Bioactive glass delivery of growth factors 

Bone regeneration is a coordinated cascade of events regulated by several hormones, 
cytokines and growth factors (Carano & Filvaroff, 2003; El-Ghannam, 2005; Hsiong & 
Mooney, 2000). Bioactive glass is regarded as high-potential scaffolds due to their 
osteoconductive properties (Thomas et al., 2005). The bone bonding ability is based on the 
chemical reactivity of the bioactive glass in which silicon bonds are broken and finally a 
CaP-rich layer is deposited on top of the glass which crystallizes to hydroxycarbonate 
apatite (HCA). To improve the biodegradability of this implant, porosity is introduced 
(Karageorgiou & Kaplan, 2005) which also helps to bone ingrowth, though pore sizes should 
be large enough. This porosity is occasionally called macroporosity while the bioglass 
implants can encompass a micro or nanoporosity of their own. Interconnectivity of the pores 
is of paramount necessity for tissue engineered bone constructs which implies generation of 
overlapping pore connection into the scaffolds. In bone tissue engineering growth factors 
are also introduced to accelerate tissue ingrowth. However, due to variation in potency and 
efficacy of individual growth factors, each study claimed different levels of bone healing. 
Growth factors like bone morphogenic protein-2&7 (BMP-2&7), transforming growth factor 
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(TGF-β), basic fibroblast growth factor (bFGF), insulin like growth factor-1&2 (IGF-1&2) and 
vascular endothelial growth factor (VEGF) are commonly introduced into these scaffolds 
due to their osteoinductive properties and vascularization (Seeherman & Wozney, 2005; 
Ginebra et al., 2006; Jansen et al., 2005). This increases the clinical significant amount high 
above normal values inside the human body and increases the cost of a single implant 
considerably, therefore diminishing a possible use of the material. The most appropriate 
technique for growth factor delivery is still under debate. Bioactive glass  stimulates 
fibroblasts to secrete significantly increased amounts of angiogenic growth factors and can 
induce infiltration of a significantly increased number of blood vessels into tissue 
engineering scaffolds (Day, 2005; Day et al., 2004). Therefore it has a number of potential 
applications in therapeutic angiogenesis (Keshaw et al., 2005).  
PLGA polymeric system coated bioactive glass with VEGF has been investigated in the rat 
critical-sized defect with resultant enhanced angiogenesis and additive bone healing effects 
(Leach et al., 2006). An additional study in which BMP-4 and VEGF were concertedly 
delivered confirmed that combination of two growth factors promoted greater bone 
formation as compared to single factor treatment group (Huang et al., 2005). These results 
delineate a promising approach to enhance bone healing in hypovascularized defects that 
commonly occur after removal of bone tumors by radiation therapy. Sol-gel silica-based 
porous glass (xerogel) was used as a novel carrier material for recombinant human 
transforming growth factor-β1 (TGF-β1) and is capable of eliciting bone tissue reactivity that 
may serve as an effective bone graft material for the repair of osseous defects (Nicoll et al., 
1997). A delivery system consisting of collagen Type I gel, Recombinant human BMP-2 
(rhBMP-2) and 45S5 Bioglass microspheres seem to be a promising system for bone 
regeneration (Bergeron et al., 2007). Bovine bone morphogenetic protein has been delivered 
in bioactive glass on demineralized bone matrix grafts in the rat muscular pouch with 
effective outcome (Pajamaki et al., 1993). 

6. Bioglass as coating of implants 

In the present days, metallic materials gained considerable dimension as medical and dental 
devices due to their mechanical properties (Roessler et al., 2002). Implants are usually 
prepared of metals such as titanium alloys, cobalt alloys and SS 316L (García et al., 2004). 
The need to diminish costs in public health services has constrained the use of SS as the 
most economical option for orthopedic implants (Meinert et al., 1998; Fathi et al., 2003), 
because of its comparative low cost, ease of fabrication, ready availability and reasonable 
corrosion resistance. However, this material is prone to localized attack in long term use due 
to the hostile biological effects (Yılmaz et al., 2005). Besides, the corrosion of the metallic 
implants is imperative because it could adversely affect the biocompatibility and the 
mechanical integrity. Large concentrations of metallic cations coming from the implant can 
result in biologically unwanted reactions and might lead to the mechanical failure of the 
implant. Titanium and Ti-alloys are commonly used materials for in vivo applications, due 
to their good physical and mechanical properties such as low density, high corrosion 
resistance and mechanical resistance. Nevertheless, titanium and other alloying metal ions 
as aluminium and vanadium, release from the implants being accumulated in the nearby 
tissues, due to the aggressive action of the biological fluids (Hodgson et al., 2002; Zaffe et al., 
2003; Yue et al., 2002; Finet et al., 2000; Milosev et al., 2000). The lack of interaction with the 
biological environment prevents the implant from integrating with the surrounding hard 
tissue.  
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The perfection of the interface between bone and orthopaedic or dental implants is still 
considered as a challenge because the formation and maintenance of viable bone closely 
apposed to the surface of biomaterials are indispensable for the stability and clinical success 
of non-cemented orthopaedic/dental implants. It has been addressed to create a suitable 
environment where the natural biological potential for bone functional regeneration can be 
encouraged and maximized (Carlsson et al., 1994; Wennerberg et al., 1996; Larsson et al., 
1996; Buser et al., 1998). Implant osseointegration depends on various factors viz. surface 
structure, biomechanical factors and biological response (Carlsson et al., 1994; Chappard et 
al., 1999). At the present time, osseointergation is defined not only as the absence of a 
fibrous layer around the implant with an active response in terms of integration to host 
bone, but also as a chemical (bonding osteogenesis) or physico-chemical (connective tissue 
osteogenesis) bond between implant and bone (Branemårk et al., 1983; Albrektsson, 1993) 
which in turn, depends on the biomineralization into the surrounding tissue. 
Biomineralization is normally happens when the bony injury or normal bone tissue in 
cellular level takes place. The process starts with the osteolysis through the osteoclastic cells 
from the vicinity as well as from the systemic source. This is instantaneously followed by 
formation of a protein-rich matrix in the localized area (injury site) which ultimately being 
mineralized with the inorganic ions viz. calcium and phosphorous from the serum and the 
localized tissues. Once the nucleation of bone formation takes place at a very faster rate 
(approx. 10 days), then routinely further bone formation with the incorporation of above-
mentioned inorganic ions are found from the serum (Weiner, 1986). Further, implant 
loosening/migration is an unanswered complication associated with internal fixation. This 
problem may be overcome by modifying the implant/bone interface for improved osseous 
integration. Improved osseous integration may be obtained by the use of hydroxyapatite 
(HAp), b-tri calcium phosphate (b-TCP) and their composite coatings as nominally HAp to 
enhance the osteoconductivity of metallic implant (Thomas et al., 1987; Filiaggi, et al., 1991; 
Rivero et al., 1988). These coatings have been shown to promote osseointegration by 
stimulating bone growth onto the surface (Dey et al., 2011). 
Apart from calcium phosphate coating of metallic implants, extensive research has been 
initiated with bioglass as coatings for metallic implants because of their controlled surface 
reactivity and good bone bonding ability (Hench and Andersson, 1993; Hench, 1993; Ferraris 
et al., 1996). These coatings accomplish two purposes: improving the osseointegration of the 
implants, and shielding the metal against corrosion from the body fluids and the tissue from 
the corrosion products of the alloys. Unfortunately, most of the attempts to coat metallic 
implants with bioactive glass have had poor success. The explanation behind is due to poor 
adhesion of the coating and/or degradation of the glass properties during the coating 
procedure (typically enameling, or flame or plasma spray coating) (Hench & Andersson, 
1993). Bioactive glass can be used to coat titanium alloys by different methods such as 
conventional enamelling, sputtering techniques, vacuum plasma spray and subsonic 
thermal spraying technique (STS) (Ferraris et al., 1996; Verné et al., 2000; Jana et al., 1995; 
Gomez-Vega et al., 2000; Li et al., 2007). These implants can offer several advantages, in 
terms of the high mechanical properties of the metallic substrate combined with the 
bioactivity of the coating aside from good protection of the substrate from corrosion. 
Bioactive glass and nanohydroxyapatite (BG-nHA) on titanium-alloy orthopaedic implants 
and surrounding bone tissue in vivo was evaluated and observed that these coatings could 
enhance the osteointegration of orthopaedic implant (Xie et al., 2010). Bioglass coating of the 
three-dimensional Ti scaffolds by the radio frequency magnetron sputtering technique 
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determines an in vitro increase of the bone matrix elaboration and may potentially have a 
clinical benefit (Saino et al., 2010). Biocompatible yttrium-stabilized zirconia (YSZ) in the 
form of nanoparticles and bioactive Bioglass (45S5) in the form of microparticles were used 
to coat Ti6Al4V substrates by electrophoretic deposition with potential applications in the 
orthopedics (Radice et al., 2007). Fluorapatite glass LG112 can be used as a sputtered glass 
coating on roughened surfaces of Ti6Al4V for possible future use for medical implants 
(Bibby et al., 2005). However, the Ti-alloys used in the fabrication of prosthetic implants are 
very reactive, and the glass/metal reactions that occur during firing are unfavorable to 
adhesion and bioactivity. Thus, coating titanium with bioactive glass is challenging. Besides, 
tremendous care should be taken in storing and/or shipping HA- or BG-coated Ti6A14V 
implants due to loss of bonding strength in low and high humidity (Chern et al., 1993). 
Bioactive glass  comprising of SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been formulated 
to coat orthopedic metallic implants by enameling and now have been utilized for coatings 
on commercial dental implants approximately 100 µm thick (Lopez-Esteban et al., 2003). 
Due to the peculiar softening properties of these materials, bioactive glass and glass-
ceramics do imply a good alternative to hydroxyapatite, commonly used as bioactive 
coating on metallic prostheses in order to improve their adhesion to the bone. Further, 
bioglass coated implants exhibited greater bone ingrowth compared to hydroxyapatite 
coated and control implants in animal model and they maintained their mechanical integrity 
over time (Wheeler et al., 2001). In a study, multilayered bioactive glass-ceramic coatings on 
a Ti6Al4V alloy screws was conducted for dental applications with layers of controlled 
thickness (Verné et al., 2004). A biocompatible composite implant system was developed by 
coating bioglass onto cobalt-chromium alloy substrates where thin, adherent bioglass 
coating provides the ability of bonding directly to bone, while the underlying metal 
substrate gives the composite implants adequate strength to be used in load bearing 
applications (Lacefield & Hench, 1986). Improvement of the alumina/bone interface in 
Alumina on alumina total hip arthroplasty can be done by coating with sol-gel derived 
bioactive glass (Hamadouche et al., 2000). Polyurethane (PUR) and polyurethane/poly(d, l-
lactide) acid (PUR/PDLLA) based scaffolds coated with Bioglass particles have potential to 
be used as bioactive, biodegradable scaffolds in bone tissue engineering (Bil et al., 2007). 

7. Bioactive glasses’ in biomolecular engineering with special referencing to 
third generation biomaterials 

Third generation biomaterials should be biocompatible, resorbable, and also bioactive 
eliciting specific cellular responses at the molecular level (Hench & Polak, 2002). Three-
dimensional porous structures that stimulate cells’ invasion, attachment and proliferation, 
as well as functionalized surfaces with peptide sequences that mimic the ECM components 
so as to trigger specific cell responses are being developed (Agrawal & Ray, 2001; 
Hutmacher et al., 1996; Temenoff & Mikos, 2000).  
Tissue engineering applications and development of third generation biomaterials emerged 
at the same time. Tissue engineering is the promising therapeutic approach that combines 
cells onto resorbable scaffolds for in situ tissues regeneration and has emerged as an 
alternative potential solution to tissue transplantation and grafting. Tissue engineering is a 
multidisciplinary field that applies principles of life sciences and engineering towards the 
development of biological substitutes employing three fundamental “tools”, namely cells, 
scaffolds and growth factors (GFs) for the restoration, maintenance or improvement of 
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tissue form and function (Langer & Vacanti, 1993).  The common limitations associated with 
the application of allografts, autografts and xenografts include donor site insufficiency, 
rejection, diseases transfer, harvesting costs and post-operative morbidity (Fernyhough et 
al., 1992; Banwart et al., 1995; Goulet et al., 1997). Tissue engineering and regenerative 
medicine has made a new horizon in repairing and restoring organs and tissues using the 
natural signaling pathways and components such as stem cells, growth factors and peptide 
sequences among others, in amalgamation with synthetic scaffolds (Hardouin et al., 2000). 
Apart from the basic tissue engineering triad (cells, signaling and scaffold), angiogenesis 
and nutrients delivery should be taken into account as they both play vital role to stimulate 
tissue regeneration. Although tissue engineering emerged as a very dazzling option to 
overcome many existing problems related to the current use of autografts, allografts and 
xenografts, its implementation as part of a routine treatment for tissue replacement is 
controversial. Despite such limitations, tissue engineering is a very promising approach that 
opens newer vista of study and research in the field of regenerative medicine. 
Scaffolds of three-dimensional porous structures need to achieve the following criteria in 
order to be used in tissue engineering [Spaans et al., 2000; Boccaccini et al., 2008]. 
 must be biocompatible and bio-resorbable at a controllable degradation and resorption 

rate as well as provide the control over the appropriation 
 must possess well defined microstructure with an interconnected porous network, 

formed by a combination of macro and micro pores to allow proper tissue ingrowth, 
vascularization and nutrient delivery. 

 must have proper mechanical properties to regenerate bone tissue in load-bearing sites.  
 must keep its structural integrity during the first stages of the new bone formation. 
The amalgamation of bioactivity and biodegradability is most likely the pertinent 
characteristics that include third-generation biomaterials. The bioactivation of surfaces with 
specific biomolecules is an influential means that allows cell guidance and stimulation 
towards a particular response. The endeavor is to mimic the ECM environment and function 
in the developed scaffold by coupling specific cues in its surface. Thus, cell behavior 
including adhesion, migration, proliferation and differentiation into a particular lineage will 
be influenced by the biomolecules attached to the material surface.  In addition, pore 
distribution, interconnectivity and size are of paramount significance in order to assurance 
of proper cell proliferation and migration, as well as tissue vascularization and diffusion of 
nutrients.  
The concept of using bioactive glass substrates as templates for in vitro synthesis of bone 
tissue for transplantation by assessing the osteogenic potential has been investigated (Xynos 
et al., 2000; Phan et al., 2003; Chen et al., 2008; Brown et al., 2008) and confirmed that 
Bioglass scaffolds have potential as osteoconductive tissue engineering substrates for 
maintenance and normal functioning of bone tissue (Bretcanu et al., 2009). Human primary 
osteoblast-like cells cultured in contact with different bioactive glass suggested that bioglass 
not only induces osteogenic differentiation of human primary osteoblast-like cells, but can 
also increase collagen synthesis and release. The newly formulated bioactive gel-glass seems 
to have potential applications for tissue engineering, inducing increased collagen synthesis 
(Bosetti et al., 2003; Jones et al., 2007). Bone marrow is a combination of hematopoietic, 
vascular, stromal and mesenchymal cells capable of skeletal repair/regeneration with the 
ability of bone marrow cells to differentiate into osteoblasts and osteoclasts which is 
imperative in tissue regeneration during fracture healing, or for successful osteointegration 
of implanted prostheses, and in bone remodelling. Bone marrow cell culture systems with 
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bioactive glass seem to be useful and induce osteogenic differentiation and cell 
mineralization (Bosetti & Cannas, 2005). In another study, bioglass granules in combination 
with expanded periosteal cells in culture were investigated in rabbit large calvarial defects 
with increased ossification (Moreira-Gonzalez et al., 2005).  
Bioresorbable and bioactive tissue engineering composite scaffolds based on bioactive glass 
(45S5 Bioglass(R)) particles and macroporous poly(DL-lactide) (PDLLA) and polylactide-co-
glycolide (PLAGA)  with osteoblasts (HOBs) cells have tremendous potential as scaffolds for 
guided bone regeneration (Roether et al., 2002; Lu et al., 2005; Yang et al., 2006; ), for 
intervertebral disc tissue repair (Wilda & Gough, 2006; Helen & Gough,  2008). In another 
study, the cellular response of fetal osteoblasts to bioactive resorbable composite films 
consisting of a poly-D,L-lactide (PDLLA) matrix and bioactive glass 45S5 particles in the 
absence of osteogenic factors stimulates osteoblast differentiation and mineralization of the 
extracellular matrix, demonstrating the osteoinductive capacity of the composite (Tsigkou et 
al., 2007). 
Revision cases of total hip implants are complicated by the considerable amount of bone 
loss. New materials and/or approaches are desirable to provide stability to the site, 
stimulate bone formation, and eventually lead to fully functional bone tissue. Porous 
bioactive glass have been developed as scaffolds for bone tissue engineering. The 
incorporation of tissue-engineered constructs utilizing these scaffolds seeded with 
osteoprogenitor cells or culture expanded to form bonelike tissue on the scaffold prior to 
implantation has been conducted in large, cortical bone defects in the rat (Livingston et al., 
2002).  
Bioglass-incorporated alginate hydrogels encapsulated with murine embryonic stem cells 
have potential implications and applications for tissue engineering where bioglass 
substrates could be used for the production of bioengineered bone both in vitro and in vivo 
and bioglass-incorporated alginate hydrogels can be injected directly into the defect area 
(Zhang et al., 2009). One of the major factors in the therapeutic accomplishment of bone 
tissue engineered scaffolds is the capacity of the construct to vascularise after implantation. 
For improving vascularization, porous bioactive glass-ceramic construct combination of co-
culture human umbilical vein endothelial cells (HUVECS) with human osteoblasts (HOBS) 
may promote vascularization and facilitate tissue regeneration (Deb et al., 2010).  

8. Conclusion 

During the past decades, there has been a major breakthrough in development of 
biomedical materials including various ceramic materials for bone and dental repair as well 
as implantable drug delivery systems. Both increases in life expectancy and the social 
obligations to provide a better quality of life appeared to be the vital factors to this 
development. Significant attention has been paid towards the use of synthetic graft 
materials in bone tissue and dental repair and development of new implant technologies has 
led to the design concept of novel bioactive materials. Bioactive glass inducing active 
biomineralization in vivo have been a high demand in the development of clinical 
regenerative medicine. Originally, it was thought for bone repair and bone regeneration via 
tissue engineering (TE), but eventually has become a very attractive biomaterials of choice 
having implications in: dental, maxillofacial and ear implants, drug delivery system, 
injectable for treatment of enuresis, to activate genes for maintaining the health of tissues as 
they age, third generation TE scaffolds for soft connective tissue regeneration and repair, 
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hybrid inorganic/organic bioactive scaffolds, anti-microbial effect for wound dressing, 
molecular modeling of the interaction of surface sites with amino acids, coating of metallic 
implants, effective carriers of growth factors, bioactive peptides etc.. In the coming future, 
bioactive glass may be explored by the scientists/researchers/clinicians in a better way and 
dimension for wellbeing of human kind.  
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