16 research outputs found

    Rhodococcus equi-Infected Macrophages Are Recognized and Killed by CD8+ T Lymphocytes in a Major Histocompatibility Complex Class I-Unrestricted Fashion

    No full text
    The goal of this research was to examine the role of cytotoxic T lymphocytes (CTL) in the control of Rhodococcus equi and specifically to determine if R. equi -specific CD8 + CTL occurred in the blood of immune horses. Equine peripheral blood mononuclear cells stimulated with antigen-presenting cells either infected with R. equi or exposed to soluble R. equi antigen lysed R. equi -infected target cells. Lysis was decreased to background by depletion of either CD2 + or CD3 + cells, indicating that the effector cell had a T-lymphocyte, but not NK cell, phenotype. Stimulation induced an increased percentage of CD8 + T cells in the effector population, and depletion of CD8 + T cells resulted in significantly decreased lysis of infected targets. Killing of R. equi -infected macrophages by effector cells was equally effective against autologous and equine leukocyte antigen A (classical major histocompatibility complex [MHC] class I) mismatched targets. To evaluate potential target antigens, target cells were infected with either virulent (80.6-kb plasmid-containing) or avirulent (plasmid-cured) R. equi . The degree of lysis was not altered by the presence of the plasmid, providing evidence that the virulence plasmid, which is required for survival within macrophages, was not necessary for recognition and killing of R. equi -infected cells. These data indicate that immunocompetent adult horses develop R. equi- specific CD8 + CTL, which may play a role in immunity to R. equi . The apparent lack of restriction via classical MHC class I molecules suggests a novel or nonclassical method of antigen processing and presentation, such as presentation by CD1 or other nonclassical MHC molecules

    Immune reconstitution prevents continuous equine infectious anemia virus replication in an Arabian foal with severe combined immunodeficiency: Lessons for control of lentiviruses

    No full text
    Acute infection with equine infectious anemia virus (EIAV), a lentivirus of horses, results in a persistent high-level viremia in Arabian foals affected with severe combined immunodeficiency (SCID). This observation argues against the idea that the transient nature of acute lentiviral viremia is solely a function of viral population dynamics. To extend these studies, EIAV-specific immune reconstitution was attempted prior to EIAV challenge in 2 SCID foals, using adoptively transferred virus-stimulated lymphocytes derived from persistently EIAV-infected half sibling donors. Following transfer, lymphocyte engraftment occurred in 1 foal, and EIAV-specific cytotoxic T lymphocytes as well as neutralizing antibody activity developed. Following a brief period of plasma viremia in this foal, EIAV replication was controlled and plasma virus could not be detected by RT-PCR or culture. These results provide further direct evidence that a specific immune response is required for termination of plasma viremia in acute lentiviral infections

    Presentation and binding affinity of equine infectious anemia virus CTL envelope and matrix protein epitopes by an expressed equine classical MHC class I molecule

    No full text
    Control of a naturally occurring lentivirus, equine infectious anemia virus (EIAV), occurs in most infected horses and involves MHC class I-restricted, virus-specific CTL. Two minimal 12-aa epitopes, Env-RW12 and Gag-GW12, were evaluated for presentation by target cells from horses with an equine lymphocyte Ag-A1 (ELA-A1) haplotype. Fifteen of 15 presented Env-RW12 to CTL, whereas 11 of 15 presented Gag-GW12. To determine whether these epitopes were presented by different molecules, MHC class I genes were identified in cDNA clones from Arabian horse A2152, which presented both epitopes. This horse was selected because it is heterozygous for the SCID trait and is used to breed heterozygous females. Offspring with SCID are used as recipients for CTL adoptive transfer, and normal offspring are used for CTL induction. Four classical and three putative nonclassical full-length MHC class I genes were found. Human 721.221 cells transduced with retroviral vectors expressing each gene had equine MHC class I on their surface. Following peptide pulsing, only cells expressing classical MHC class I molecule 7-6 presented Env-RW12 and Gag-GW12 to CTL. Unlabeled peptide inhibition of (125)I-labeled Env-RW12 binding to 7-6-transduced cells demonstrated that Env-RW12 affinity was 15-fold higher than Gag-GW12 affinity. Inhibition with truncated Env-RW12 demonstrated that amino acid positions 1 and 12 were necessary for binding, and single substitutions identified positions 2 and 3 as possible primary anchor residues. Since MHC class I 7-6 presented both epitopes, outbred horses with this allele can be immunized with these epitopes to optimize CTL responses and evaluate their effectiveness against lentiviral challenge

    Lymphocyte proliferation responses induced to broadly reactive Th peptides did not protect against equine infectious anemia virus challenge

    No full text
    The effect of immunization with five lipopeptides, three containing T-helper (Th) epitopes and two with both Th and cytotoxic T-lymphocyte (CTL) epitopes, on equine infectious anemia virus (EIAV) challenge was evaluated. Peripheral blood mononuclear cells from EIAV lipopeptide-immunized horses had significant proliferative responses to Th peptides compared with those preimmunization, and the responses were attributed to significant responses to peptides Gag from positions 221 to 245 (Gag 221-245), Gag 250-269, and Pol 326-347; however, there were no consistent CTL responses. The significant proliferative responses in the EIAV lipopeptide-immunized horses allowed testing of the hypothesis that Th responses to immunization would enhance Th and CTL responses following EIAV challenge and lessen the viral load and the severity of clinical disease. The EIAV lipopeptide-immunized group did have a significant increase in proliferative responses to Th peptides 1 week after virus challenge, whereas the control group did not. Two weeks after challenge, a significant CTL response to virus-infected cell targets occurred in the EIAV lipopeptide-immunized group compared to that in the control group. These Th and CTL responses did not significantly alter either the number of viral RNA copies/ml or disease severity. Thus, lipopeptide-induced proliferative responses and enhanced Th and CTL responses early after virus challenge were unable to control challenge virus load and clinical disease

    Development of a DNA microarray for detection of expressed equine classical MHC class I sequences in a defined population

    No full text
    Development of an accurate and efficient molecular-based equine MHC class I typing method would facilitate the study of T lymphocyte immune responses in horses. Here, a DNA microarray was designed to detect expressed classical MHC class I genes comprising serologically defined equine leukocyte antigen (ELA)-A haplotypes represented in a closed Arabian horse breeding herd. Initially, cloning and sequencing of RT-PCR products were used to identify sequences associated with the ELA-A1, A4, and W11 haplotypes, and one undefined haplotype, in six horses. Subsequently, sequence-specific, conserved (positive control), and random nucleotide (negative control) 23- to 27-mer oligonucleotide microarray probes were designed and spotted onto an epoxy-coated masked slide using a robotic arrayer. Bulk RT-PCR products from each horse were biotinylated by nick translation, hybridized to the array, and detected using tyramide signal amplification. The microarray consistently detected eight of nine classical MHC class I transcripts and allowed ELA haplotypic associations to be made. Cloning and sequencing of RT-PCR products were then performed in a group of ELA disparate horses and ponies, in which six novel sequences were identified. This group was used to determine the specificity of the array. Overall, the microarray was more efficient than cloning and sequencing for detecting expressed classical MHC class I sequences in this defined population of horses, and was significantly more specific than serology. These results confirmed the utility of a microarray-based method for high-resolution MHC class I typing in the horse. With additional probes the array could be useful in a broader population

    Data from: Molecular phylogeny of the marmots (Rodentia: Sciuridae): tests of evolutionary and biogeographic hypotheses

    No full text
    There are 14 species of marmots distributed across the Holarctic, and despite extensive systematic study, their phylogenetic relationships remain largely unresolved. In particular, comprehensive studies have been lacking. A well-supported phylogeny is needed to place the numerous ecological and behavioral studies on marmots in an evolutionary context. To address this situation, we obtained complete cytochrome (cyt) b sequences for 13 of the species and partial sequence for the 14th. We employed a statistical approach to both phylogeny estimation and hypothesis testing using parsimony and maximum likelihood based methods. We conducted statistical tests on a suite of previously proposed hypotheses of phylogenetic relationships and biogeographic histories. The cyt b data strongly support the monophyly of Marmota and a western montane clade in the Nearctic. The results are consistent with an initial diversification in North America followed by an invasion and subsequent rapid diversification in the Palearctic. These analyses reject the two major competing hypotheses of M. broweri's phylogenetic relationships: namely, that it is the sister species to camtschatica of eastern Siberia and that it is related closely to caligata of the Nearctic. The Alaskan distribution of M. broweri is best explained as a reinvasion from the Palearctic but a Nearctic origin can not be rejected. Several other conventionally recognized species groups can also be rejected. Social evolution has been homoplastic, with large colonial systems evolving in two groups convergently. The cyt b data do not provide unambiguous resolution of several basal nodes in the Palearctic radiation, leaving some aspects of pelage and karyotypic evolution equivocal

    Data from: Molecular phylogeny of the marmots (Rodentia: Sciuridae): tests of evolutionary and biogeographic hypotheses

    No full text
    There are 14 species of marmots distributed across the Holarctic, and despite extensive systematic study, their phylogenetic relationships remain largely unresolved. In particular, comprehensive studies have been lacking. A well-supported phylogeny is needed to place the numerous ecological and behavioral studies on marmots in an evolutionary context. To address this situation, we obtained complete cytochrome (cyt) b sequences for 13 of the species and partial sequence for the 14th. We employed a statistical approach to both phylogeny estimation and hypothesis testing using parsimony and maximum likelihood based methods. We conducted statistical tests on a suite of previously proposed hypotheses of phylogenetic relationships and biogeographic histories. The cyt b data strongly support the monophyly of Marmota and a western montane clade in the Nearctic. The results are consistent with an initial diversification in North America followed by an invasion and subsequent rapid diversification in the Palearctic. These analyses reject the two major competing hypotheses of M. broweri's phylogenetic relationships: namely, that it is the sister species to camtschatica of eastern Siberia and that it is related closely to caligata of the Nearctic. The Alaskan distribution of M. broweri is best explained as a reinvasion from the Palearctic but a Nearctic origin can not be rejected. Several other conventionally recognized species groups can also be rejected. Social evolution has been homoplastic, with large colonial systems evolving in two groups convergently. The cyt b data do not provide unambiguous resolution of several basal nodes in the Palearctic radiation, leaving some aspects of pelage and karyotypic evolution equivocal
    corecore