6 research outputs found

    Nanoliposomal irinotecan with fluorouracil for the treatment of advanced pancreatic cancer, a single institution experience

    No full text
    Abstract Background Effective treatment options for advanced pancreatic cancer are finite. NAPOLI-1, a phase III randomized trial, demonstrated the efficacy of nanoliposomal irinotecan with fluorouracil/leucovorin (nal-IRI + 5-FU/LV) for the treatment of advanced pancreatic cancer following progression on gemcitabine-based chemotherapy. There are limited additional data on the safety and efficacy of nal-IRI + 5-FU/LV following FDA approval in October 2015. We examined the post-approval safety and effectiveness of nal-IRI + 5-FU/LV in advanced pancreatic cancer patients receiving treatment at Memorial Sloan Kettering Cancer Center. Methods A retrospective chart review was conducted of all patients beginning treatment with nal-IRI + 5-FU/LV from October 2015 through June 2017. Using the electronic medical record and institutional database, information was extracted pertaining to demographics, performance status (ECOG), prior therapies, dose, duration of treatment, adverse events, progression free survival (PFS), overall survival (OS) and treatment response. Results Fifty six patients were identified. Median progression free survival (PFS) was 2.9 months and median overall survival (OS) was 5.3 months. Patients with prior disease progression on irinotecan experienced PFS and OS of 2.2 and 3.9 mo, respectively. Patients without prior irinotecan exposure experienced significantly longer PFS (4.8 mo, p = 0.02) and OS (7.7 mo, p = 0.002), as did patients who received prior irinotecan without disease progression (PFS, 5.7 mo, p = 0.04; OS, 9.0 mo, p = .04). Progression on prior irinotecan was associated with greater lines of prior advanced disease chemotherapy (2 vs 1). Dose reductions (DR) were most frequently due to fatigue (42%) and diarrhea (37%), but were not associated with worse outcomes. In fact, patients with ≥1 DR experienced longer PFS (5.4 v 2.6 mo, p = 0.035). Sequential therapy with nab-paclitaxel + gemcitabine (nab-P + Gem) followed by nal-IRI + 5-FU/LV (n = 25) resulted in OS of 23.0 mo. Mutations in TP53 were associated with shorter PFS. Conclusions These data support the safety and efficacy of nal-IRI + 5-FU/LV, reinforcing results of NAPOLI-1. Patients without disease progression on prior irinotecan fared significantly better than patients with progression, when treated with nal-IRI + 5-FU/LV. Sequential therapy with nab-P + Gem followed by nal-IRI + 5-FU/LV demonstrates encouraging median OS. These findings provide guidance for patients most likely to benefit from nal-IRI + 5-FU/LV

    Plasma Vascular Endothelial Growth Factor Concentrations after Intravitreous Anti–Vascular Endothelial Growth Factor Therapy for Diabetic Macular Edema

    No full text
    © 2018 American Academy of Ophthalmology Purpose: To assess systemic vascular endothelial growth factor (VEGF)-A levels after treatment with intravitreous aflibercept, bevacizumab, or ranibizumab. Design: Comparative-effectiveness trial with participants randomly assigned to 2 mg aflibercept, 1.25 mg bevacizumab, or 0.3 mg ranibizumab after a re-treatment algorithm. Participants: Participants with available plasma samples (N = 436). Methods: Plasma samples were collected before injections at baseline and 4-week, 52-week, and 104-week visits. In a preplanned secondary analysis, systemic-free VEGF levels from an enzyme-linked immunosorbent assay were compared across anti-VEGF agents and correlated with systemic side effects. Main Outcome Measures: Changes in the natural log (ln) of plasma VEGF levels. Results: Baseline free VEGF levels were similar across all 3 groups. At 4 weeks, mean ln(VEGF) changes were −0.30±0.61 pg/ml, −0.31±0.54 pg/ml, and −0.02±0.44 pg/ml for the aflibercept, bevacizumab, and ranibizumab groups, respectively. The adjusted differences between treatment groups (adjusted confidence interval [CI]; P value) were −0.01 (−0.12 to +0.10; P = 0.89), −0.31 (−0.44 to −0.18; P \u3c 0.001), and −0.30 (−0.43 to −0.18; P \u3c 0.001) for aflibercept-bevacizumab, aflibercept-ranibizumab, and bevacizumab-ranibizumab, respectively. At 52 weeks, a difference in mean VEGF changes between bevacizumab and ranibizumab persisted (−0.23 [−0.38 to −0.09]; P \u3c 0.001); the difference between aflibercept and ranibizumab was −0.12 (P = 0.07) and between aflibercept and bevacizumab was +0.11 (P = 0.07). Treatment group differences at 2 years were similar to 1 year. No apparent treatment differences were detected at 52 or 104 weeks in the cohort of participants not receiving injections within 1 or 2 months before plasma collection. Participants with (N = 9) and without (N = 251) a heart attack or stroke had VEGF levels that appeared similar. Conclusions: These data suggest that decreases in plasma free-VEGF levels are greater after treatment with aflibercept or bevacizumab compared with ranibizumab at 4 weeks. At 52 and 104 weeks, a greater decrease was observed in bevacizumab versus ranibizumab. Results from 2 subgroups of participants who did not receive injections within at least 1 month and 2 months before collection suggest similar changes in VEGF levels after stopping injections. It is unknown whether VEGF levels return to normal as the drug is cleared from the system or whether the presence of the drug affects the assay\u27s ability to accurately measure free VEGF. No significant associations between VEGF concentration and systemic factors were noted
    corecore