69 research outputs found

    Probing the Local Interstellar Medium with Scintillometry of the Bright Pulsar B1133+16

    Get PDF
    The interstellar medium hosts a population of scattering screens, most of unknown origin. Scintillation studies of pulsars provide a sensitive tool for resolving these scattering screens and a means of measuring their properties. In this paper, we report our analysis of 34 yr of Arecibo observations of PSR B1133 + 16, from which we have obtained high-quality dynamic spectra and their associated scintillation arcs, arising from the scattering screens located along the line of sight to the pulsar. We have identified six individual scattering screens that are responsible for the observed scintillation arcs, which persist for decades. Using the assumption that the scattering screens have not changed significantly in this time, we have modeled the variations in arc curvature throughout the Earth's orbit and extracted information about the placement, orientation, and velocity of five of the six screens, with the highest-precision distance measurement placing a screen at just 5.46−0.59+0.54{5.46}_{-0.59}^{+0.54} pc from the Earth. We associate the more distant of these screens with an underdense region of the Local Bubble

    A Simultaneous Dual-Frequency Scintillation Arc Survey of Six Bright Canonical Pulsars Using the Upgraded Giant Metrewave Radio Telescope

    Full text link
    We use the Upgraded Giant Metrewave Radio Telescope to measure scintillation arc properties in six bright canonical pulsars with simultaneous dual frequency coverage. These observations at frequencies from 300 to 750 MHz allowed for detailed analysis of arc evolution across frequency and epoch. We perform more robust determinations of arc curvature, scattering delay, and scintillation timescale frequency-dependence, and comparison between arc curvature and pseudo-curvature than allowed by single-frequency-band-per-epoch measurements, which we find to agree with theory and previous literature. We find a strong correlation between arc asymmetry and arc curvature, which we have replicated using simulations, and attribute to a bias in the Hough transform approach to scintillation arc analysis. Possible evidence for an approximately week long timescale over which a given scattering screen dominates signal propagation was found by tracking visible scintillation arcs in each epoch in PSR J1136+1551. The inclusion of a 155 minute observation allowed us to resolve the scale of scintillation variations on short timescales, which we find to be directly tied to the amount of ISM sampled over the observation. Some of our pulsars showed either consistent or emerging asymmetries in arc curvature, indicating instances of refraction across their lines of sight. Significant features in various pulsars, such as multiple scintillation arcs in PSR J1136+1551 and flat arclets in PSR J1509+5531, that have been found in previous works, were also detected. The multiple band capability of the upgraded GMRT shows excellent promise for future pulsar scintillation work

    Pulsar scintillation through thick and thin: Bow shocks, bubbles, and the broader interstellar medium

    Get PDF
    Observations of pulsar scintillation are among the few astrophysical probes of very small-scale (≲ au) phenomena in the interstellar medium (ISM). In particular, characterization of scintillation arcs, including their curvature and intensity distributions, can be related to interstellar turbulence and potentially overpressurized plasma in local ISM inhomogeneities, such as supernova remnants, H II regions, and bow shocks. Here we present a survey of eight pulsars conducted at the Five-hundred-metre Aperture Spherical Telescope (FAST), revealing a diverse range of scintillation arc characteristics at high sensitivity. These observations reveal more arcs than measured previously for our sample. At least nine arcs are observed toward B1929+10 at screen distances spanning ~90 per cent of the pulsar’s 361 pc path length to the observer. Four arcs are observed toward B0355+54, with one arc yielding a screen distance as close as ∼105 au (<1 pc) from either the pulsar or the observer. Several pulsars show highly truncated, low-curvature arcs that may be attributable to scattering near the pulsar. The scattering screen constraints are synthesized with continuum maps of the local ISM and other well-characterized pulsar scintillation arcs, yielding a three-dimensional view of the scattering media in context

    Theory of Parabolic Arcs in Interstellar Scintillation Spectra

    Full text link
    Our theory relates the secondary spectrum, the 2D power spectrum of the radio dynamic spectrum, to the scattered pulsar image in a thin scattering screen geometry. Recently discovered parabolic arcs in secondary spectra are generic features for media that scatter radiation at angles much larger than the rms scattering angle. Each point in the secondary spectrum maps particular values of differential arrival-time delay and fringe rate (or differential Doppler frequency) between pairs of components in the scattered image. Arcs correspond to a parabolic relation between these quantities through their common dependence on the angle of arrival of scattered components. Arcs appear even without consideration of the dispersive nature of the plasma. Arcs are more prominent in media with negligible inner scale and with shallow wavenumber spectra, such as the Kolmogorov spectrum, and when the scattered image is elongated along the velocity direction. The arc phenomenon can be used, therefore, to constrain the inner scale and the anisotropy of scattering irregularities for directions to nearby pulsars. Arcs are truncated by finite source size and thus provide sub micro arc sec resolution for probing emission regions in pulsars and compact active galactic nuclei. Multiple arcs sometimes seen signify two or more discrete scattering screens along the propagation path, and small arclets oriented oppositely to the main arc persisting for long durations indicate the occurrence of long-term multiple images from the scattering screen.Comment: 22 pages, 11 figures, submitted to the Astrophysical Journa

    Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set

    Get PDF
    When galaxies merge, the supermassive black holes in their centers may form binaries and, during the process of merger, emit low-frequency gravitational radiation in the process. In this paper we consider the galaxy 3C66B, which was used as the target of the first multi-messenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C66B to less than (1.65±0.02)×109 M⊙(1.65\pm0.02) \times 10^9~{M_\odot} using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits, and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data to `blind' pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences.Comment: 14 pages, 6 figures. Accepted by Ap

    An Unusual Pulse Shape Change Event in PSR J1713+0747 Observed with the Green Bank Telescope and CHIME

    Get PDF
    The millisecond pulsar J1713+0747 underwent a sudden and significant pulse shape change between 2021 April 16 and 17 (MJDs 59320 and 59321). Subsequently, the pulse shape gradually recovered over the course of several months. We report the results of continued multifrequency radio observations of the pulsar made using the Canadian Hydrogen Intensity Mapping Experiment and the 100 m Green Bank Telescope in a 3 yr period encompassing the shape change event, between 2020 February and 2023 February. As of 2023 February, the pulse shape had returned to a state similar to that seen before the event, but with measurable changes remaining. The amplitude of the shape change and the accompanying time-of-arrival residuals display a strong nonmonotonic dependence on radio frequency, demonstrating that the event is neither a glitch (the effects of which should be independent of radio frequency, ν) nor a change in dispersion measure alone (which would produce a delay proportional to ν−2). However, it does bear some resemblance to the two previous "chromatic timing events" observed in J1713+0747, as well as to a similar event observed in PSR J1643−1224 in 2015

    An unusual pulse shape change event in PSR J1713+0747 observed with the Green Bank Telescope and CHIME

    Full text link
    The millisecond pulsar J1713+0747 underwent a sudden and significant pulse shape change between April 16 and 17, 2021 (MJDs 59320 and 59321). Subsequently, the pulse shape gradually recovered over the course of several months. We report the results of continued multi-frequency radio observations of the pulsar made using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and the 100-meter Green Bank Telescope (GBT) in a three-year period encompassing the shape change event, between February 2020 and February 2023. As of February 2023, the pulse shape had returned to a state similar to that seen before the event, but with measurable changes remaining. The amplitude of the shape change and the accompanying TOA residuals display a strong non-monotonic dependence on radio frequency, demonstrating that the event is neither a glitch (the effects of which should be independent of radio frequency, ν\nu) nor a change in dispersion measure (DM) alone (which would produce a delay proportional to ν−2\nu^{-2}). However, it does bear some resemblance to the two previous "chromatic timing events" observed in J1713+0747 (Demorest et al. 2013; Lam et al. 2016), as well as to a similar event observed in PSR J1643-1224 in 2015 (Shannon et al. 2016).Comment: 19 pages, 8 figures. Submitted to ApJ. Data available at https://doi.org/10.5281/zenodo.723645

    The NANOGrav Nine-year Data Set:Observations, Arrival Time Measurements, and Analysis of 37 Millisecond Pulsars

    Get PDF
    We present high-precision timing observations spanning up to nine years for 37 millisecond pulsars monitored with the Green Bank and Arecibo radio telescopes as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project. We describe the observational and instrumental setups used to collect the data, and methodology applied for calculating pulse times of arrival; these include novel methods for measuring instrumental offsets and characterizing low signal-to-noise ratio timing results. The time of arrival data are fit to a physical timing model for each source, including terms that characterize time-variable dispersion measure and frequency-dependent pulse shape evolution. In conjunction with the timing model fit, we have performed a Bayesian analysis of a parameterized timing noise model for each source, and detect evidence for excess low-frequency, or "red," timing noise in 10 of the pulsars. For 5 of these cases this is likely due to interstellar medium propagation effects rather than intrisic spin variations. Subsequent papers in this series will present further analysis of this data set aimed at detecting or limiting the presence of nanohertz-frequency gravitational wave signals
    • …
    corecore