192 research outputs found
Effect of CD26/dipeptidyl peptidase IV on Jurkat sensitivity to G2/M arrest induced by topoisomerase II inhibitors
CD26/dipeptidyl peptidase IV (DPPIV) is a surface antigen with multiple functions, including a role in T-cell activation and the development of certain human cancers. We previously demonstrated that CD26/DPPIV enhanced sensitivity of Jurkat cells to doxorubicin. We now show that expression of CD26/DPPIV enhanced sensitivity of CD26 Jurkat transfectants to G2โM arrest mediated by the antineoplastic agent etoposide. The increased sensitivity to etoposide-induced G2โM arrest was associated with disruption of cell cycle-related events, including hyperphosphorylation of p34cdc2 kinase, change in cdc25C expression and phosphorylation, and alteration in cyclin B1 expression. CD26/DPPIV-associated enhancement of doxorubicin and etoposide-induced G2โM arrest was also observed in serum-free media, suggesting an effect of CD26 on cell-derived processes rather than serum-derived factors. Importantly, our work elucidated a potential mechanism for the enhanced susceptibility of CD26-expressing Jurkat cells to the topoisomerase II inhibitors by demonstrating that CD26/DPPIV surface expression was associated with increased topoisomerase II ฮฑ levels and enhanced enzyme activity. Besides being the first to show a functional association between the multifaceted molecule CD26 and the key cellular protein topoisomerase II ฮฑ, our studies provide additional evidence of a potential role for CD26 in the treatment of selected malignancies
Bordetella pertussis Infection Exacerbates Influenza Virus Infection through Pertussis Toxin-Mediated Suppression of Innate Immunity
Pertussis (whooping cough) is frequently complicated by concomitant infections with respiratory viruses. Here we report the effect of Bordetella pertussis infection on subsequent influenza virus (PR8) infection in mouse models and the role of pertussis toxin (PT) in this effect. BALB/c mice infected with a wild-type strain of B. pertussis (WT) and subsequently (up to 14 days later) infected with PR8 had significantly increased pulmonary viral titers, lung pathology and mortality compared to mice similarly infected with a PT-deficient mutant strain (ฮPT) and PR8. Substitution of WT infection by intranasal treatment with purified active PT was sufficient to replicate the exacerbating effects on PR8 infection in BALB/c and C57/BL6 mice, but the effects of PT were lost when toxin was administered 24 h after virus inoculation. PT had no effect on virus titers in primary cultures of murine tracheal epithelial cells (mTECs) in vitro, suggesting the toxin targets an early immune response to increase viral titers in the mouse model. However, type I interferon responses were not affected by PT. Whole genome microarray analysis of gene expression in lung tissue from PT-treated and control PR8-infected mice at 12 and 36 h post-virus inoculation revealed that PT treatment suppressed numerous genes associated with communication between innate and adaptive immune responses. In mice depleted of alveolar macrophages, increase of pulmonary viral titers by PT treatment was lost. PT also suppressed levels of IL-1ฮฒ, IL-12, IFN-ฮณ, IL-6, KC, MCP-1 and TNF-ฮฑ in the airways after PR8 infection. Furthermore PT treatment inhibited early recruitment of neutrophils and NK cells to the airways. Together these findings demonstrate that infection with B. pertussis through PT activity predisposes the host to exacerbated influenza infection by countering protective innate immune responses that control virus titers
Clofazimine Inhibits Human Kv1.3 Potassium Channel by Perturbing Calcium Oscillation in T Lymphocytes
The Kv1.3 potassium channel plays an essential role in effector memory T cells and has been implicated in several important autoimmune diseases including multiple sclerosis, psoriasis and type 1 diabetes. A number of potent small molecule inhibitors of Kv1.3 channel have been reported, some of which were found to be effective in various animal models of autoimmune diseases. We report herein the identification of clofazimine, a known anti-mycobacterial drug, as a novel inhibitor of human Kv1.3. Clofazimine was initially identified as an inhibitor of intracellular T cell receptor-mediated signaling leading to the transcriptional activation of human interleukin-2 gene in T cells from a screen of the Johns Hopkins Drug Library. A systematic mechanistic deconvolution revealed that clofazimine selectively blocked the Kv1.3 channel activity, perturbing the oscillation frequency of the calcium-release activated calcium channel, which in turn led to the inhibition of the calcineurin-NFAT signaling pathway. These effects of clofazimine provide the first line of experimental evidence in support of a causal relationship between Kv1.3 and calcium oscillation in human T cells. Furthermore, clofazimine was found to be effective in blocking human T cell-mediated skin graft rejection in an animal model in vivo. Together, these results suggest that clofazimine is a promising immunomodulatory drug candidate for treating a variety of autoimmune disorders
T-regulatory cell modulation: the future of cancer immunotherapy?
T-regulatory cells suppress anti-tumour immunity in cancer patients and in murine tumour models. Furthermore, their activity is likely to have an effect on the effectiveness of immunotherapeutic treatments for cancer. Here we describe the current status of developing clinical strategies for modulating Treg activity in cancer patients
Survey of childhood empyema in Asia: Implications for detecting the unmeasured burden of culture-negative bacterial disease
<p>Abstract</p> <p>Background</p> <p>Parapneumonic empyema continues to be a disease of significant morbidity and mortality among children despite recent advances in medical management. To date, only a limited number of studies have assessed the burden of empyema in Asia.</p> <p>Methods</p> <p>We surveyed medical records of four representative large pediatric hospitals in China, Korea, Taiwan and Vietnam using <it>ICD</it>-10 diagnostic codes to identify children <16 years of age hospitalized with empyema or pleural effusion from 1995 to 2005. We also accessed microbiology records of cultured empyema and pleural effusion specimens to describe the trends in the epidemiology and microbiology of empyema.</p> <p>Results</p> <p>During the study period, we identified 1,379 children diagnosed with empyema or pleural effusion (China, n = 461; Korea, n = 134; Taiwan, n = 119; Vietnam, n = 665). Diagnoses of pleural effusion (n = 1,074) were 3.5 times more common than of empyema (n = 305), although the relative proportions of empyema and pleural effusion noted in hospital records varied widely between the four sites, most likely because of marked differences in coding practices. Although pleural effusions were reported more often than empyema, children with empyema were more likely to have a cultured pathogen. In addition, we found that median age and gender distribution of children with these conditions were similar across the four countries. Among 1,379 empyema and pleural effusion specimens, 401 (29%) were culture positive. <it>Staphylococcus aureus </it>(n = 126) was the most common organism isolated, followed by <it>Streptococcus pneumoniae </it>(n = 83), <it>Pseudomonas aeruginosa </it>(n = 37) and <it>Klebsiella </it>(n = 35) and <it>Acinetobacter </it>species (n = 34).</p> <p>Conclusion</p> <p>The age and gender distribution of empyema and pleural effusion in children in these countries are similar to the US and Western Europe. <it>S. pneumoniae </it>was the second leading bacterial cause of empyema and pleural effusion among Asian children. The high proportion of culture-negative specimens among patients with pleural effusion or empyema suggests that culture may not be a sufficiently sensitive diagnostic method to determine etiology in the majority of cases. Future prospective studies in different countries would benefit from standardized case definitions and coding practices for empyema. In addition, more sensitive diagnostic methods would improve detection of pathogens and could result in better prevention, treatment and outcomes of this severe disease.</p
- โฆ