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The Picornaviridae family consists of a large group of non-
enveloped, icosahedral viruses with a single, positive-
stranded RNA genome. The family includes pathogens that
are notable for a variety of human and animal diseases
(Racaniello, 2007). Picornaviruses initiate infections by
attachment to host cell receptor molecules and then undergo
uncoating to release the viral genome into the cytosol for
replication (Racaniello, 2007). The enterovirus (EV) genus is
perhaps the most intensively studied genus among the 26
known genera.

X-ray crystallography (Hogle et al., 1985; Rossmann
et al., 1985), cryo-electron microscopy (cryo-EM) (Olson
et al., 1993; Bubeck et al., 2005b) and molecular biology
have unraveled some of the molecular mechanisms of EV
cell entry (Tuthill et al., 2010). Specifically, a canyon-like cleft
on the surface of the virus encircling each pentameric vertex
is frequently the binding site for putative cellular receptors
whose structure belongs to the immunoglobulin superfamily
(Table 1) (Rossmann et al., 2002). When these receptor
molecules bind into the “canyon” of the EVs, the “pocket
factor”, a fatty acid-like molecule residing in a hydrophobic
pocket underneath the “canyon”, is ejected (Rossmann,
1994; Xiao et al., 2005; Xiao et al., 2011). This destabilizes
the virus and triggers the uncoating process leading to the
formation of uncoating intermediate A particles (Rossmann
et al., 2002; Bubeck et al., 2005a; Zhang et al., 2008). When
a receptor binds into the canyon, the base of the canyon is
depressed towards the center of the virus thus diminishing
the size of the pocket that contains the pocket factor, causing
the stabilizing pocket factor to be ejected. This happens
because the peptides forming the base of the canyon also
form the roof of the pocket. Thus, in essence, either the
receptor or the pocket factor can bind to the virus, but not
both (Smith et al., 1986; Rossmann, 1989). However,
receptors to some EVs, such as the minor group rhinovi-
ruses, bind to other locations on the viral surface and don’t
assist in viral uncoating (Table 1) (Plevka et al., 2010; Tuthill
et al., 2010; Shakeel et al., 2013).

Human enterovirus 71 (EV71) is currently a major caus-
ative agent for hand, foot and mouth disease with occasion-
ally severe neurological complications. A growing number of

EV71 outbreaks have been reported in the Asia-Pacific area
since the late 1990s raising considerable public health con-
cerns (Yip et al., 2013). Two transmembrane proteins, human
PSGL-1 (P-selectin glycoprotein ligand-1) and human
SCARB2 (scavenger receptor B2), have been identified as
the functional receptors for EV71 (Nishimura et al., 2009;
Yamayoshi et al., 2009). Unlike human PSGL-1, human
SCARB2 is expressed in a wide range of tissues, including
neurons in the central nervous system, and functions as a
receptor for all tested EV71 strains. More importantly, human
SCARB2 not only binds to EV71 but induces EV71 uncoating
in a low pH environment (Yamayoshi et al., 2013), which is
consistent with the finding that endosomal acidification is
essential for EV71 infection (Lin et al., 2012). SCARB2 has a
novel fold with a twisted β-barrel core (Neculai et al., 2013). It
appears that residues 144–151 of a three-helix bundle at the
head region of human SCARB2 are directly involved in EV71
binding according to two independent studies (Yamayoshi
and Koike, 2011; Chen et al., 2012). Nevertheless, there is
some uncertainty whether there are also other residues
involved in virus attachment. Thus the human SCARB2-
dependent uncoating of EV71 remains enigmatic.

Dang et al. now present structural and functional studies
of human SCARB2 (Dang et al., 2014). Human SCARB2
structures at both neutral and acidic conditions were deter-
mined by X-ray crystallography, showing a pH-dependent
conformational change of the three-helix bundle. Structural
comparisons indicate that the helical bundle acts as a “cap”
that regulates the accessibility of the entrance to a large
cavity which traverses the whole length of the ectodomain
and might be a lipid-transfer tunnel.

Recombinant human SCARB2 was shown to facilitate the
expulsion of sphingosine (a pseudo-pocket factor) from
EV71 saturated with radioisotope labelled sphingosine under
acidic conditions. Furthermore, the transition of native EV71
to A particles on binding SCARB2 demonstrated that EV71
undergoes uncoating upon incubation with human SCARB2
in a low pH environment. In vitro binding assays, employing
synthetic peptides together with in silico docking, suggested
the three-helix bundle binds to the EV71 “canyon” and that
the entrance of the putative lipid-transfer tunnel is in
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proximity to the hydrophobic pocket underneath the “canyon”
at neutral pH. Taken together, these findings offer a novel
model for human SCARB2-dependent cell entry of EV71 in
which human SCARB2 serves as a molecular switch that
aids in the expulsion of the pocket factor and triggers EV71
uncoating upon acidification.

The expulsion of the labelled sphingosine by binding of
SCARB2 supports the suggestion that the receptor binds
into the canyon as proposed by Dang et al. Hence, an
alternative explanation of the above observations is that
binding of SCARB2 expels the pocket factor and destabilizes
the virus in much the same way as the other receptor mol-
ecules that are known to bind into the canyon of EVs.

Another aspect of the study by Dang et al. is that acid-
induced conformational change of the “cap” region might be
a common basis for pH-dependent interactions of SCARB2
with its ligands including both EV71 (an exogenous ligand)
and β-glucocerebrosidase (β-GC, an endogenous ligand), as
SCARB2 was known to deliver β-GC from the endoplasmic
reticulum to lysosomes (Zachos et al., 2012). Thus it would
be interesting to determine which residues are important for
the pH-induced structural changes and whether substitutions
of these residues would impair the ability of SCARB2 to
trigger EV71 uncoating and transport β-GC. More impor-
tantly, SB-RI and CD36, which are homologous to SCARB2,
have so far been shown to transport cholesterol and fatty-
acids, respectively (Neculai et al., 2013). SCARB2, however,
hasn’t been demonstrated to possess the ability of binding
and/or delivering lipid despite containing a large cavity that
might accommodate lipid ligands. Therefore, the functional
importance of this large cavity remains to be further
characterized.

Although Dang et al. have made some interesting sug-
gestions regarding the interaction of EV71 with human
SCARB2, there are still many other questions that need to
be answered. For instance, does human SCARB2 induce
the uncoating in other viruses that can interact with SCARB2
such as coxsackievirus A7, A14 and A16 (Yamayoshi et al.,
2012)? If yes, would the acid-triggered conformational

change be a major factor for the uncoating of these viruses?
Is it possible to design agents that interfere with the pH-
dependent conformational change of SCARB2 or bind to the
presumable lipid-transfer tunnel? Can these agents be
selectively designed so as to inhibit EV71 and other related
viruses without affecting the normal function of SCARB2 in
host cells?

In summary, the work by Dang et al. provides a new
model for receptor-mediated entry of picornaviruses into host
cells that depends on the pH-triggered conformational
change of the receptor molecule. The detailed molecular
basis of the interaction between EV71 with human SCARB2
and the functional importance of the large cavity within
SCARB2 still remains open questions for future studies.
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The table is based on observations by Rossmann et al., (2002), Plevka et al., (2010), Tuthill et al., (2010) and Shakeel et al., (2013).

ICAM-1 intercellular adhension molecule 1, CAR coxsackievirus and adenovirus receptor, LDLR low density lipoprotein receptor.
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